高中数学导数知识点归纳总结

高中导数知识点归纳

一、基本概念

1. 导数的定义:

是函数定义域的一点,如果自变量处有增量,则函数值也引起相应的增量;比值称为函数在点之间的平均变化率;如果极限存在,则称函数在点处可导,并把这个极限叫做处的导数

在点处的导数记作

2 导数的几何意义:(求函数在某点处的切线方程)

函数在点处的导数的几何意义就是曲线在点处的切线的斜率,也就是说,曲线在点P处的切线的斜率是,切线方程为

3.基本常见函数的导数:

(C为常数)                            ②

;                                ④;

                                     ⑥;

;                                    ⑧.

二、导数的运算

1.导数的四则运算:

法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),

即:

法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个

函数乘以第二个函数的导数,即:

常数与函数的积的导数等于常数乘以函数的导数: (为常数)

法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:

2.复合函数的导数

形如的函数称为复合函数。法则: .

三、导数的应用

1.函数的单调性与导数

(1)设函数在某个区间可导,

如果,则在此区间上为增函数;

如果,则在此区间上为减函数。

(2)如果在某区间内恒有,则为常函数

2.函数的极点与极值:当函数在点处连续时,

①如果在附近的左侧>0,右侧<0,那么是极大值;

②如果在附近的左侧<0,右侧>0,那么是极小值.

3.函数的最值:

一般地,在区间上连续的函数上必有最大值与最小值。函数

求函数的一般步骤:①求函数的导数,令导数解出方程的跟②在区间列出的表格,求出极值及的值;③比较端点及极值点处的函数值的大小,从而得出函数的最值

4.相关结论总结:

①可导的奇函数函数其导函数为偶函数.

②可导的偶函数函数其导函数为奇函数.

四、例题插播

例1:函数高考资源网(www.ks5u.com),中国最大的高考网站,您身边的高考专家。已知高考资源网(www.ks5u.com),中国最大的高考网站,您身边的高考专家。时取得极值,则高考资源网(www.ks5u.com),中国最大的高考网站,您身边的高考专家。= (       )

A.2           B.3           C.4          D.5

例2. 已知函数高考资源网(www.ks5u.com),中国最大的高考网站,您身边的高考专家。的图像过点P(0,2),且在点M高考资源网(www.ks5u.com),中国最大的高考网站,您身边的高考专家。处的切线方程为高考资源网(www.ks5u.com),中国最大的高考网站,您身边的高考专家。.(Ⅰ)求函数高考资源网(www.ks5u.com),中国最大的高考网站,您身边的高考专家。的解析式;(Ⅱ)求函数高考资源网(www.ks5u.com),中国最大的高考网站,您身边的高考专家。的单调区间.

 

第二篇:高中数学第十四章导数知识点

高中数学第十四章 

考试内容:
数学探索©版权所有www.delve.cn导数的背影.
数学探索©版权所有www.delve.cn导数的概念.
数学探索©版权所有www.delve.cn多项式函数的导数.
数学探索©版权所有www.delve.cn利用导数研究函数的单调性和极值.函数的最大值和最小值.
数学探索©版权所有www.delve.cn考试要求:
数学探索©版权所有www.delve.cn(1)了解导数概念的某些实际背景.
数学探索©版权所有www.delve.cn(2)理解导数的几何意义.
数学探索©版权所有www.delve.cn(3)掌握函数,y=c(c为常数)、y=xn(n∈N+)的导数公式,会求多项式函数的导数.
数学探索©版权所有www.delve.cn(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.
数学探索©版权所有www.delve.cn(5)会利用导数求某些简单实际问题的最大值和最小值.

§14.   知识要点

1. 导数(导函数的简称)的定义:设是函数定义域的一点,如果自变量处有增量,则函数值也引起相应的增量;比值称为函数在点之间的平均变化率;如果极限存在,则称函数在点处可导,并把这个极限叫做处的导数,记作,即=.

注:①是增量,我们也称为“改变量”,因为可正,可负,但不为零.

②以知函数定义域为的定义域为,则关系为.

2. 函数在点处连续与点处可导的关系:

⑴函数在点处连续是在点处可导的必要不充分条件.

可以证明,如果在点处可导,那么处连续.

事实上,令,则相当于.

于是

⑵如果处连续,那么在点处可导,是不成立的.

例:在点处连续,但在点处不可导,因为,当>0时,;当<0时,,故不存在.

注:①可导的奇函数函数其导函数为偶函数.

②可导的偶函数函数其导函数为奇函数.

3. 导数的几何意义:

函数在点处的导数的几何意义就是曲线在点处的切线的斜率,也就是说,曲线在点P处的切线的斜率是,切线方程为

4. 求导数的四则运算法则:

为常数)

注:①必须是可导函数.

②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.

例如:设,则处均不可导,但它们和

处均可导.

5. 复合函数的求导法则:

复合函数的求导法则可推广到多个中间变量的情形.

6. 函数单调性:

⑴函数单调性的判定方法:设函数在某个区间内可导,如果>0,则为增函数;如果<0,则为减函数.

⑵常数的判定方法;

如果函数在区间内恒有=0,则为常数.

注:①fx)递增的充分条件,但不是必要条件,如上并不是都有,有一个点例外即x=0时fx) = 0,同样是f(x)递减的充分非必要条件.

②一般地,如果fx在某区间内有限个点处为零,在其余各点均为正(或负),那么fx)在该区间上仍旧是单调增加(或单调减少)的.

7. 极值的判别方法:(极值是在附近所有的点,都有,则是函数的极大值,极小值同理)

当函数在点处连续时,

①如果在附近的左侧>0,右侧<0,那么是极大值;

②如果在附近的左侧<0,右侧>0,那么是极小值.

也就是说是极值点的充分条件是点两侧导数异号,而不是=0. 此外,函数不可导的点也可能是函数的极值点.当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).

注①: 若点是可导函数的极值点,则=0. 但反过来不一定成立. 对于可导函数,其一点是极值点的必要条件是若函数在该点可导,则导数值为零.

例如:函数使=0,但不是极值点.

②例如:函数,在点处不可导,但点是函数的极小值点.

8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.

注:函数的极值点一定有意义.

9. 几种常见的函数导数:

I.为常数)                      

)                   

II.                             

                              

III. 求导的常见方法:

①常用结论:.

②形如两边同取自然对数,可转化求代数和形式.

③无理函数或形如这类函数,如取自然对数之后可变形为,对两边求导可得.

相关推荐