高等数学求极限的常用方法(附例题和详解)

高等数学求极限的14种方法

一、极限的定义

1.极限的保号性很重要:设

(i)若A,则有,使得当时,

(ii)若有使得当时,

2.极限分为函数极限、数列极限,其中函数极限又分为时函数的极限和的极限。要特别注意判定极限是否存在在:

 (i)数列是它的所有子数列均收敛于a。常用的是其推论,即“一个数列收敛于a的充要条件是其奇子列和偶子列都收敛于a”

 (ii)

 (iii)

 (iv)单调有界准则

(v)两边夹挤准则(夹逼定理/夹逼原理)

 (vi)柯西收敛准则(不需要掌握)。极限存在的充分必要条件是:

二.解决极限的方法如下:

1.等价无穷小代换。只能在乘除时候使用。例题略。

2.洛必达(L’hospital)法则(大题目有时候会有暗示要你使用这个方法)

    它的使用有严格的使用前提。首先必须是X趋近,而不是N趋近,所以面对数列极限时候先要转化成求x趋近情况下的极限,数列极限的n当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f(x)、g(x),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况:

(i)“”“”时候直接用

(ii)“”“”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即

(iii)“”“”“”对于幂指函数,方法主要是取指数还取对数的方法,即,这样就能把幂上的函数移下来了,变成“”型未定式。

3.泰勒公式(含有的时候,含有正余弦的加减的时候)

   ;

  cos=

ln(1+x)=x-

(1+x)=

以上公式对题目简化有很好帮助

4.两多项式相除:设

P(x)=,

 (i)(ii)若,则

5.无穷小与有界函数的处理办法。例题略。

面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了。

6.夹逼定理:主要是应用于数列极限,常应用放缩和扩大不等式的技巧。以下面几个题目为例:(1)设,求

           解:由于,由夹逼定理可知

     (2)求

          解:由,以及可知,原式=0

  (3)求

解:由,以及得,原式=1

7.数列极限中等比等差数列公式应用(等比数列的公比q绝对值要小于1)。例如:

  求  。提示:先利用错位相减得方法对括号内的式子求和。

8.数列极限中各项的拆分相加(可以使用待定系数法来拆分化简数列)。例如:

  =

9.利用极限相同求极限。例如:

  (1)已知,且已知存在,求该极限值。

      解:设=A,(显然A)则,即,解得结果并舍去负值得A=1+

  (2)利用单调有界的性质。利用这种方法时一定要先证明单调性和有界性。例如

       设

    解:(i)显然(ii)假设,即。所以,是单调递增数列,且有上界,收敛。设,(显然,即。解方程并舍去负值得A=2.即

 10.两个重要极限的应用。 

   (i) 常用语含三角函数的“” 型未定式

(ii),在“”型未定式中常用

11.还有个非常方便的方法就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的,快于n!,n!快于指数型函数(b为常数),指数函数快于幂函数,幂函数快于对数函数。当x趋近无穷的时候,它们比值的极限就可一眼看出。

12.换元法。这是一种技巧,对一道题目而言,不一定就只需要换元,但是换元会夹杂其中。例如:求极限。解:设

原式=

13.利用定积分求数列极限。例如:求极限。由于,所以

14.利用导数的定义求“”型未定式极限。一般都是x0时候,分子上是“”的形式,看见了这种形式要注意记得利用导数的定义。(当题目中告诉你告诉函数在具体某一点的导数值时,基本上就是暗示一定要用导数定义)

例:设存在,求

解:原式=

       =

 

第二篇:数列求和方法总结[1]

数列求和的方法和技巧

数列是高中代数的重要内容,又是学习高等数学的基础。 在高考和各种数学竞赛中都占有重要的地位。 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧。

一、          公式法

   利用下列常用求和公式求和是数列求和的最基本最重要的方法。

1、  差数列求和公式:  

2、等比数列求和公式:

3、                 4、

4、

:已知,求的前n项和.

解析:如果计算过程中出现了这些关于n的多项式的求和形式,可以直接利用公式。

二、错位相减

这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an· bn}的前n项和,其中{ an }、{ bn }分别是等差数列和等比数列。

例:求数列a,2a2,3a3,4a4,…,nan, …(a为常数)的前n项和。

解:若a=0, 则Sn=0

若a=1,

则Sn=1+2+3+…+n=          

若a≠0且a≠1

则Sn=a+2a2+3a3+4a4+…+ nan

∴aSn= a2+2 a3+3 a4+…+nan+1

∴(1-a) Sn=a+ a2+ a3+…+an- nan+1

=

 ∴Sn=

当a=0时,此式也成立。

∴Sn=


解析:数列是由数列对应项的积构成的,此类型的才适应错位相减,(课本中的的等比数列前n项和公式就是用这种方法推导出来的),但要注意应按以上三种情况进行讨论,最后再综合成两种情况。

三、倒序相加

这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个

[例5] 求证:

证明: 设………………………….. ①

       把①式右边倒转过来得

                         (反序)

       又由可得

       …………..…….. ②

   ①+②得         (反序相加)

        ∴  

解析:此类型关键是抓住数列中与首末两端等距离的两项之和相等这一特点来进行倒序相加的。

四、分组求和

有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可。

例:Sn=-1+3-5+7-…+(-1)n(2n-1)

解法:按n为奇偶数进行分组,连续两项为一组。

当n为奇数时:

Sn=(-1+3)+(-5+7)+(-9+11)+…+(-2n+1)

 =2×+(-2n+1)

 =-n

当n为偶数时:

Sn=(-1+3)+(-5+7)+(-9+11)+…+[(-2n+3)+(2n+1)]

 =2×

 =n

∴Sn=

五、裂项法求和

这是分解与组合思想在数列求和中的具体应用。 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的通项分解(裂项)如:

(1)       (2)

(3)   (4)

(5)

(6)

例:求数列,…,,…的前n项和S

解:∵=

    Sn=

      =

      =

解析:要先观察通项类型,在裂项求和,而且要注意剩下首尾两项,还是剩下象上例中的四项,后面还很可能和极限、求参数的最大小值联系。

六、合并求和

针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn.

例:  数列{an}:,求S2002.

解:设S2002

可得

……

                  (找特殊性质项)

∴ S2002                                    (合并求和)

     =

=5

七、拆项求和

先研究通项,通项可以分解成几个等差或等比数列的和或差的形式,再代入公式求和。

例:求数5,55,555,…, 55 …5 的前n项和S n

解: 因为 55 …5=

解析:根据通项的特点,通项可以拆成两项或三项的常见数列,然后再分别求和。

另外:Sn=

可以拆成:Sn=(1+2+3+…+n)+()

相关推荐