实验报告051103225

福州大学土木工程学院本科实验教学示范中心

学生实验报告

工程流体力学实验

题目:

实验项目1:毕托管测速实验

实验项目2:管路沿程阻力系数测定实验

实验项目3:管路局部阻力系数测定实验

实验项目4:流体静力学实验

姓名:__陈双福__学号:051103225组别:  7 

实验指导教师姓名:       艾翠玲       

同组成员:      田林芳、谢旻、陈翔宇     

20##年1月2日

实验一  毕托管测速实验

一、实验目的

1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用测压管测量点流速的技术和使用方法。 
     2.通过对毕托管的构造和适用性的了解及其测量精度的检验,进一步明确水力学量测仪器的现实作用。

3.通过对管口的流速测量,从而分析管口淹没出流,流线的分布规律。

二、实验原理

根据伯努利方程,毕托管所测点的速度表达式为:

              

其中u——毕托管测点的流速

C——毕托管的校正系数(由实验装置上直接读出C=1.003);

Δh——毕托管水头差

又根据伯努利方程,从孔口出流计算测点的速度表达式为:

         

其中u——测点的速度(由毕托管测出)

ΔH——上下游水位差

——流速系数

由1、2两式相比可得:

  (一般=0.996±1‰)

三、实验记录

流速测定记录表         校正系数C=1.003    k=44.40

各测速点位置如图:

 

四、实验结论

1、由1、2、3号位的流速比较可得,在同一高程时,离管嘴距离仅处流速较大,远离管嘴处流速较小,主要是因为淹没出流时,流体的粘滞性形成的阻力所影响。

2、测点流速在高水位、中水位、低水位时流速不同,(高水位时最大,中水位次之,低水位最小),但流速系数几乎不变,说明流速系数不由流量大小决定。

3、通过对比毕托管在管轴线上不同位置得出:测点流速系数在轴线上时最大,平均为1.00,在轴线两边时流速系数较小为0.09,且几乎呈对称分布。

五、实验分析与讨论

1.利用测压管测量点压强时,为什么要排气?怎样检验排净与否?

答:若测压管内存有气体,在测量压强时,测压管及其连通管只有充满被测液体,即满足连续条件,才有可能测得真值, 否则如果其中夹有气柱, 就会使测压失真, 从而造成误差。 误差值与气柱高度和其位置有关。对于非堵塞性气泡,虽不产生误差,但若不排除,实验过程中很可能变成堵塞性气柱而影响 量测精度。 检验的方法:是毕托管置于静水中,检查分别与毕托管全压孔及静压孔相连通的两根测压 管液面是否齐平。如果气体已排净,不管怎样抖动塑料连通管,两测管液面恒齐平。

2.毕托管的压头差Δh和管嘴上、下游水位差ΔH之间的大小关系怎样?为什么?

答:由于

这两个差值分别和动能及势能有关。在势能转换为动能的过程中,由于粘性力的存在而有能量损失,所以压头差较小。

3.所测的流速系数<1说明了什么?

答:若管嘴出流的作用水头为,流量为Q,管嘴的过水断面积为A,相对管嘴平均流速v,则有

称作管嘴流速系数。

若相对点流速而言,由管嘴出流的某流线的能量方程,可得

式中:为流管在某一流段上的损失系数;为点流速系数。

本实验在管嘴淹没出流的轴心处测得=1.000,表明管嘴轴心处的水流由势能转换为动能的过程中的能量损失非常小,以该实验的精确度难以测得。

实验二  管路沿程阻力系数测定实验

  一、实验目的

1、掌握流体流经管道时沿程阻力损失的测定方法。

2、测定流体经过直管时的沿程阻力,确定沿程阻力 λ 与 Re 的关系。

3、学会压差计和流量计的使用。

二、实验成果及要求

1.     有关常数。                                 

实验装置台号         

圆管直径d1=15cm, d2=20cm, d3=25cm,量测段长度L=85cm。及计算(见表1)。

2.绘图分析*    绘制lgυ~lghf曲线,并确定指数关系值m的大小。在厘米纸上以lgυ为横坐标,以lghf为纵坐标,点绘所测的lgυ~lghf关系曲线,根据具体情况连成一段或几段直线。求厘米纸上直线的斜率

将从图上求得的m值与已知各流区的m值(即层流m=1,光滑管流区m=1.75,粗糙管紊流区m=2.0,紊流过渡区1.75<m<2.0)进行比较,确定流区。

表1    记录及计算表

图1     λ 与 Re 的关系图

 


三、实验分析与讨论

1.为什么压差计的水柱差就是沿程水头损失?如实验管道安装成倾斜,是否影响实验成果?

答:在管道中的,水头损失直接反应于水头压力。测力水头两端压差就等于水头损失。如果管道倾斜安装,不影响实验结果。但压差计应垂直,如果在特殊情况下无法垂直,可乘以倾斜角度转化值。

2.据实测m值判别本实验的流动型态和流区。

答:曲线的斜率m=1.0~1.8,即成正比,表明流动为层流(m=1.0)、紊流光滑区和紊流过渡区(未达阻力平方区)。

3.本次实验结果与莫迪图吻合与否?试分析其原因。

答:钢管的当量粗糙度一般为0.2mm,常温下,,经济流速,若实用管径D=(20~100)cm,其,相应的=0.0002~0.001,由莫迪图可知,流动均处在过渡区。

若需达到阻力平方区,那么相应的,流速应达到(5~9)m/s。这样高速的有压管流在实际工程中非常少见。而泄洪洞的当量粗糙度可达(1~9)mm,洞径一般为(2~3)m,过流速往往在(5~10)m/s以上,其大于,故一般均处于阻力平方区。


实验三  管路局部阻力系数测定实验

一、实验目的要求:

1、 掌握三点法,四点法测量局部阻力系数的技能。

2、 通过对圆管突扩局部阻力系数的表达公式和突缩局部阻力系数的经验公式的实验与分析,熟悉用理论分析法和经验法建立函数式的途径。

3、 加深对局部阻力损失机理的理解。

    二、实验成果及要求

1.记录计算有关常数。                          实验装置台号No         

d1=D1=   0.97       cm,        d2=d3= d4= D2=   2.05     cm,

d5=d6=D3=   1.00       cm,        l1—2=12cm,      l2—3=24cm,

l3—4=12cm,     l4—B=6cm,      lB—5=6cm,       l5—6=6cm,

=     0.602                  

=      0.381                 

2.整理记录、计算表。

3.将实测值与理论值(突扩)或公认值(突缩)比较。

表1  记录表

表2计算表

三、实验分析与讨论

1.结合实验成果,分析比较突扩与突缩在相应条件下的局部损失大小关系:

1)不同Re的突扩ξe是否相同?

2)在管径比变化相同的条件下,其突扩ξe是否一定大于突缩ξs

答:由式

表明影响局部阻力损失的因素是。由于有

突扩:

突缩:

则有

当                   

                     

时,突然扩大的水头损失比相应的突然收缩的要大。在本实验最大流量Q下,突然扩大损失较突然缩小损失约大一倍,即

     接近于1时,突然扩大的水流形态接近于逐渐扩大管的流动,因而阻力损失显著减小。

2.  结合流动仪演示的水力现象,分析局部阻力损失机理何在?产生突扩与突缩局部阻力损失的主要部位在哪里?怎样减小局部阻力损失?

答:流动演示仪1-7型可显示突扩、突缩、渐扩、渐缩、分流、合流、阀道、绕流等三十多种内、外流的流动图谱。据此对于局部阻力损失的机理分析如下:

从显示的图谱可见,凡流道边界突变处,形成大小不一的漩涡区。漩涡是产生损失的主要根源。由于水质点的无规则运动和激烈的紊动,相互磨擦,便消耗了部分水体的自储能量。另外,当这部分低能流体被主流的高能流体带走时,还须克服剪切流的速度梯度,经质点间的动能交换,达到流速的重新组合,这也损耗了部分能量。这样就造成了局部阻力损失。

从流动仪可见,突扩段的漩涡主要发生在突扩断面以后,而且与扩大系数有关,扩大系数越大,漩涡区也越大,损失也越大,所以产生突扩局部阻力损失的主要部位在突扩断面的后部。而突缩段的漩涡在收缩断面均有。突缩前仅在死角区有小漩涡,且强度较小,而突缩的后部产生了紊动度较大的漩涡环区。可见产生突缩水头损失的主要部位是在突缩断面后。

从以上分析可知,为了减小局部阻力损失,在设计变断面管道几何边界形状时应流线型化或昼接近流线形,以避免漩涡的形成,或使漩涡区尽可能小。如欲减小管道的局部阻力,就应减小管径比以降低突扩段的漩涡区域;或把突缩进口的直角改为圆角,以消除突缩断面后的漩涡环带,可使突缩局部阻力系数减小到原来的。突然收缩实验管道使用年份长以后,实测阻力系数减小,主要原因也在这里。


实验四  流体静力学实验

一、实验目的要求:

1.  掌握用测压管测量流体静压强的技能;

2.  验证不可压缩流体静力学基本方程;

3.  通过对诸多流体静力学现象的实验分析研讨,进一步提高解决静力学实际问题的能力。

二、实验成果及要求

1.记录有关常数。                          实验装置台号No          

各测点的标尺读数为:

B = 1.1     cm,▽C= -3.5  cm,▽D= -6.5   cm, = 9。897   N/cm3

2.分别求出各次测量时,A、B、C、D点的压强,并选择一基准检验同一静止液体内的任意二点C、D的是否为常数。

由流体静力学基本方程可求得A,B,C,D的压强,由所算得的数值可以得到

=const

   3.求出油的容重。

8.3135   N/cm3

4.测出4#测压重管插入小水杯水中深度。

三、实验分析与讨论

1.同一静止液体内的测压管水头线是根什么线?

答:实验直接观察可知,同一静止液面内的测压管水头线是一根水平线。

2.当pB<0时,试根据记录数据确定水箱内的真空区域。

答:,相应容器的真空区域包括以下三个部分:

(1)过测压管2液面作一水平面,该平面以上由密封的水、气所占区域,均为真空区域。

(2)过箱顶小不杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。

(3)在测压管5中,自水面向下深度某一段水柱亦为真空区域。

3.若再箅一根直尺,试采用另外最简便的方法测定

答:  用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度,由式 ,从而求得

    4.如测压管太细,对测压管液面的读数将有何影响?

答:设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差。如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。

5.过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部液体是同一等压面?

答:不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具有下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),相对管5和水箱中的液体而言,该水平面不是等压面。

6.用图1.1装置能演示变液位下的恒定流实验吗?

答:关闭各通气阀门,开启底阀,放水片刻,可看到有空气由C进入水箱。这时阀门的出流就是变液位下的恒定水流。

7.该仪器在加气增压后,水箱液面将下降δ而测压管液面半升高H,实验时,若以p0=0时的水箱液面作为测量基准,试分析加气增压后,实际压强(H+δ)与视压强H的相对误差值.本仪器测压管内径为0.8cm,箱体内径为20cm.

答:加压后,水箱液面比基准面下降了δ,而同时测压管1、2的液面各比基准面升高了H,由水量平衡有:

   因而可略去不计。对单根测压管容器若有D/d<=10或对两根测压管的容器D/d<=7时,便可使ε<=0.01.


表1   流体静压强测量记录及计算表         单位:cm

注:表中基准面选在   测压管2标尺所在零点界面          ZC=   -2.9    cm   ZD=    -5.9       cm


表2  油容重测量记录及计算表     单位:cm




 

第二篇:实验报告(完整版)

深 圳 大 学 实 验 报 告

      称:­                                    

      称:                                   

              

    院:        物理科学与技术学院          

        

                          号:         

        

      师:                 号:              

           

      报告人:                      号:              

      

      间:                    星期      

      实验报告提交时间:                                


注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。

    2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。

相关推荐