4.电磁学实验报告

电磁学实验报告

【实验目的】

1、学习电磁学部分重要实验的演示方法,研究演示实验怎样与讲解配合。

2、学习“变压器原理说明”的使用,并能根据教学需要,选择其中适当的部件与其他仪器配合,演示电磁学实验。

3、研究学生实验中的关键及学生中易出现的问题。

【实验器材】

     通电导线在磁场中受力演示器、方形线框、原副线圈、条形磁铁、蹄形磁铁、楞次定律演示器、变压器原理说明器、灵明电流计、学生电源、滑线变阻器、电键、导线若干

【实验内容】

一、演示左、右手定则

装置如图一所示为边长75mm的方形线圈,它是由40.41mm漆包线绕150匝制成如图,演示右手定则时,用条形磁铁提供磁场,线圈两端接检流计。如图一(a)。演示左手定则时,线圈两端接开关、电源,观察其运动,如图一(b)。

                   a                               b

图一演示左、右手定则演示

实验现象及结论

1、演示右手定则

用蹄形磁铁提供磁场,当线框快速切割磁感线时,灵命电流计都显示线圈有电流流过,且电流方向满足右手定则。

2、演示左手定则

线框接6V直流电源,用蹄形磁铁提供磁场。处在磁场中的导线会因受力而偏转,且受力方向满足左手定则。

二、演示楞次定律

1、用条形磁铁插入或抽出线圈实,验装置如图二(a)所示

图二(a) 楞次定律演示

实验:辨认线圈的统绕方向,测定灵敏电流计指针偏转方向和电流流入方向酌关系,并做上标记。按图二(a)连好电路。将条形磁铁插入线圈中,并记住线圈中磁场方向和磁通量的变化情况(增多还是减少),与此同时,观察电流计指针偏转方向,由它定出线圈中感生电流方向,并判断出产生磁场的方向,最终得出的磁场对原磁通的变化起的作用。

经实验得出以下结果

由此可知,的磁场总是阻碍原磁通的变化

2、用通电线圈代替条形磁铁插入或抽出线圈,实验装置如图二(b)所示

将通电线圈看作一个磁铁,由此实验可以得出与1相同的结论

图二(b) 楞次定律演示

3、用如图二(c)所示实验仪器验证楞次定律。

    将磁棒插入闭合铝环,环后退,抽出磁棒时,铝环跟随运动,说明环内感生电流研产生的磁场,总是反抗两者的相对运动。对不闭合的铝环,不产生感生电流,铝环也不动。

图二(c) 楞次定律演示

三、变压器原理说明器的使用

1、演示电压与线圈匝数的关系,实验电路如图三(a)

图三(a) 演示电压与线圈匝数的关系

将两个线圈逃入U形铁芯柱上,用压板固定。取0—400匝线圈接低压电源交流输出档(16—24V)作为初级;取0—200匝(降压)及0—800匝(升压)的线圈作为次级。最好选用两个对同一交流电压测量读数尽量接近的电压表。       

调节低压电源电压,选取几组以验证

由表中数据可看出初级线圈和刺激线圈电压能很好的满足

2、演示电流与线圈匝数的关系实验电路如图三(b)

图三(b) 演示电流与线圈匝数的关系

取0—200匝线圈接低压电源交流输出档作为初级,取0—100匝(升流)及0—400匝(降流)作为次级。电路如图三(b)所示。是两个对同一交流电流强度的测量读数尽量接近的电流表。实验中,电流表A2直接作为变压器次级负载。实验步骤与变压实验相同。选取的几组对应读数以验证

由于电流表故障,所测数据与理论偏差很大

3、演示自感

(1)试验装置如图四(a)、(b)

   

(a)通电自感            (b)断电自感

图四  演示自感

    实验现象:

    与电阻串联的灯泡先亮,与电感串联的灯泡后亮。断电时,因自感电动势,灯泡会更亮后再熄灭(实验现象并不明显)。

结论:自感电动势的方向总是阻碍原先线圈中电流的变化

4演示跳环

      用套在软铁棒上的小铝环跳起或吸引的现象(如图五),验证楞次定律。

    闭合开关,在电路被接通的瞬间,螺线管内电流增强,磁场也增强,将在铝环中产生感生电流,实验表明:感生电流所引起的磁场,与上述磁场方向相反,沼环受排斥而跳起。

图五  演示跳环

5演示阻尼摆:

演示金属摆在强磁场作用下感应形成涡流,又由涡流的磁效应,阻碍摆的运动。用万用变压器的铁芯并在线圈中通以直流电形成强磁场。

a                             b

图六   阻尼摆

让金属板制成的摆在磁极的间隙中通过,观察摆受阻尼运动减慢的情况,与自然摆动(断电)时进行对比。   

   用梳形金属片作摆,观察切断涡流减少阻尼的运动情况。

现象:两种摆在磁场中运动都会受阻,但金属板影响更大。因为梳形摆将涡流限制在很小的范围,故受力也越小。

6、演示感应灯

图七  演示感应灯

将条形铁扼竖直放在U形铁芯的一个芯柱上,再套入—800匝的线圈,通过开关接入220V交流电源。线圈接通电源后,将感应灯从条形铁辆的上方逐步套入铁芯,则小灯泡亮度逐渐增强。当小灯到达底部时,小灯甚至会被烧坏。

 

第二篇:电磁学论文

电磁学的发展史

摘 要: 电磁学是物理学的一个重要分支,有今天的地位它经过漫长的发展历程。人类在公元500年前就发现了电磁现象,但是电磁学的发展和广泛应用在18世纪以后. 18世纪,人们通过对电和磁的定量研究,发现了许多重要的规律.19世纪,科学家们发现了电和磁的相互联系,电磁感应、电磁场、电磁波等理论得到不断发展和广泛应用。早期的电磁学的研究比较零散,由于磁现象曾被认为是与电现象独立无关。同时由于磁学本身的发展和应用展用等等,磁学的内容不断扩大,所以磁学在实际上也就作为一门和电学相平行的学科来研究了。 早期的电磁学研究

早期的电磁学研究比较零散,下面按照时间顺序将主要事件列出如下: 1650年,德国物理学家格里凯在对静电研究的基础上,制造了第一台摩擦起电机。1720年,格雷研究了电的传导现象,发现了导体与绝缘体的区别,同时也发现了静电感应现象。1733年,杜菲经过实验区分出两种电荷,称为松脂电和玻璃电,即现在的负电和正电。他还总结出静电相互作用的基本特征,同性排斥,异性相吸。1745年,荷兰莱顿大学的穆欣布罗克和德国的克莱斯特发明了一种能存储电荷的装置-莱顿瓶,它和起电机一样,意义重大,为电的实验研究提供了基本的实验工具。1752年,美国科学家富兰克林对放电现象进行了研究,他冒着生命危险进行了著名的风筝实验,发明了避雷针。1777年,法国物理学家库仑通过研究毛发和金属丝的扭转弹性而发明了扭秤。1785-1786年,他用这种扭秤测量了电荷之间的作用力,并且从牛顿的万有引力规律得到启发,用类比的方法得到了电荷相互作用力与距离的平反成反比的规律,后来被称为库仑定律在早期的电磁学研究中,还值得提到的一个科学家是大家都已经在中学物理课本中学过的欧姆定律的创立者-欧姆。欧姆,1787年3月16日生于德国埃尔兰根城,父亲是锁匠。父亲自学了数学和物理方面的知识,并教给少年时期的欧姆,唤起了欧姆对科学的兴趣。16岁时他进入埃尔兰根大学研究数学、物理与哲学,由于经济困难,中途缀学,到1813年才完成博士学业。欧姆是一个很有天才和科学抱负的人,他长期担任中学教师,由于缺少资料和仪器,给他的研究工作带来不少困难,但他在孤独与困难的环境中始终坚持不懈地进行科学研究,自己动手制作仪器。欧姆对导线中的电流进行了研究。他从傅立叶发现的热传导规律受到启发,导热杆中两点间的热流正比于这两点间的温度差。因而欧姆认为,电流现象与此相似,猜想导线中两点之间的电流也许正比于它们之间的某种驱动力,即现在所称的电动势,并且花了很大的精力在这方面进行研究。开始他用伏打电堆作电源,但是因为电流不稳定,效果不好。后来他接受别人的建议改用温差电池作电源,从而保证了电流的稳定性。但是如何测量电流的大小,这在当时还是一个没有解决的难题。开始,欧姆利用电流的热效应,用热胀冷缩的方法来测量电流,但这种方法难以得到精确的结果。后来他把奥斯特关于电流磁效应的发现和库仑扭秤结合起来,巧妙地设计了一个电流扭秤,用一根扭丝悬挂一磁针,让通电导线和磁针都沿子午线方向平行放置。再用铋和铜温差电池,一端浸在沸水中,另一端

浸在碎冰中,并用两个水银槽作电极,与铜线相连。当导线中通过电流时,磁针的偏转角与导线中的电流成正比。实验中他用粗细相同、长度不同的八根铜导线进行了测量,得出了欧姆定律,也就是通过导体的电流与电势差成正比与电阻成反比。这个结果发表于1826年,次年他又出版了《关于电路的数学研究》,给出了欧姆定律的理论推导。欧姆定律发现初期,许多物理学家不能正确理解和评价这一发现,并遭到怀疑和尖锐的批评。研究成果被忽视,经济极其困难,使欧姆精神抑郁。直到1841年英国皇家学会授予他最高荣誉的科普利金牌,才引起德国科学界的重视。

安培和法拉第奠定了电动力学基础

1820年间,奥斯特在给学生讲课时,意外地发现了电流的小磁针偏转的现象。当导线通电流时,小磁针产生了偏转。这个消息传到巴黎后,启发了法国物理学家安培。他思考,既然磁与磁之间、电流与磁之间都有作用力,那么电流与电流之间是否也存在作用力呢?他重复了奥斯特的实验,几天后向巴黎科学院提交了第一篇论文,提出了磁针转动方向与电流方向的关系,就是大家在高中学习过的右手定则。再一周后,他向科学院提交了第二篇论文,在该文中,他讨论了平行载流导线之间的相互作用问题。同时,他还发现如果给两个螺线管通电流,它们就会象两个条形磁铁一样相互吸引或者排斥。1822年,安培在实验的基础上,以严密数学形式表述了电流产生磁力的基本定律,即安培定律。 既然电流有磁效应,那么磁是否也会有电流效应呢?根据物理的相互作用原理,这个结果应该是显然的,因此不少人为此做了很多实验,试图发现磁的电流效应。但是这个现象直到奥斯特发现电流磁效应的10多年后,才被英国物理学家法拉第和美国物理学家亨利发现。 法拉第是一个伟大的实验物理学家,他在电磁学方面的主要贡献就是现在称之为法拉第电磁感应定律,并且提出了力线和场的概念。前面提到的安培和奥斯特等人的工作说明了电和磁之间存在着必然的联系,法拉第发现的电磁感应定律比他们前进了一大步。他用实验证明了电不仅可以转化为磁,磁也同样可以转变为电。运动中的电能感应出磁,同样运动中的磁也能感应出电。法拉第的发现为大规模利用电力提供了基础,后来人们利用法拉第电磁感应定律制造了感应发电机,从此蒸气机时代进入了电气化时代。1831年,法拉第用铁粉做实验,形象地证明了磁力线的存在。他指出,这种力线不是几何的,而是一种具有物理性质的客观存在。从这个实验说明,电荷或者磁极周围空间并不是以前那样认为是一无所有的、空虚的,而是充满了向各个方向散发的这种力线。他把这种力线存在的空间称之为场,各种力就是通过这种场进行传递的。法拉第将他的一生所做的实验进行了总结,写出了《电学实验研究》。

麦克斯韦的电动力学

法拉第精于实验研究,麦克斯韦擅长于理论分析概括,他们相辅相成,导致了科学上的重大突破。1855年,24岁的麦克斯韦发表了他的论文《论法拉第的力线》,对法拉第的力线概念进行了数学分析。1862年,他继续发表了《论物理的力线》。在这篇论文中,他不但解释了法拉第的实验研究结果,而且还发展了法拉第的场的思想,提出了涡旋电场和位移电流的概念,初步提出了完整的电磁学理论。1873年,麦克斯韦完成了电磁理论的经典著作《电磁学通论》,建立了著名的麦克斯韦方程组,以非常优美简洁的数学语言概括了全部电磁现象。这一方程组有积分形式和微分形式。其积分形式有四个等式组成,就是说通过任

意闭合曲面的电通量等于它包围住的自由电荷的代数和 ,说明在任何电场中电场强度沿着任意闭合曲线的积分等于通过此闭合曲线包围面积的磁通量随时间变化律的负值,即在任何磁场中,通过任意封闭曲面的磁通量等于零,说明任何磁场中磁场强度沿着任意闭合曲线的积分等于通过此闭合曲线所包围面积内的全电流。麦克斯韦方程组把电荷、电流、磁场和电场的变化用数学公式全部统一起来了。从该方程组可以知道,变化的磁场能够产生电场,变化的电场能产生磁场,它们将以波动的形式在空间传播,因此麦克斯韦预言了电磁波的存在,并且推导出电磁波传播速度就是光速,因此他也同时说明了光波就是一种特殊的电磁波。这样,麦克斯韦方程组的建立就标志着完整的电磁学理论体系的建立。

由于没有实验的验证,麦克斯韦理论当时得不到大多数科学家的理解。1883年,赫兹注意到一个有关的新研究,有人提出,如果电磁波存在,那么莱顿瓶在振荡放电的时候,应该产生电磁波。1886年,赫兹在进行放电实验时,发现近傍一个没有闭和的线圈也出现了火花,他得到启发,很快制出了可以检测电磁波的电波环。电波环的结构非常简单,在一根弯成环状的粗铜线两端,安上两个金属球,小球间的距离可以进行调整。赫兹经历了无数次失败,不断改变实验设计和装置,反复调整实验仪器。终于观察到,调节电波环的两个金属球之间的间隙,当感应圈两极的金属球之间有火花跳过时,可以使在电波环的间隙处也有火花跳过,这样,他就终于检测到了电磁波。

这也就是电磁学在19世纪的发展简史。电磁学后来的发展在前人的基础上可谓突飞猛进,到今天,生活中很多地方都运用到了它。作为一名电信的学生,电磁学在我们的专业中占有极其重要的地位,我要好好学习,将电磁学更好地运用到实际中,为人们造福。

参考文献:

《电磁学》,百度文库,教材。

相关推荐