线膨胀系数实验报告参考

线胀系数测量实验报告参考稿

【实验目的】

1.学习并掌握测量金属线膨胀系数的一种方法。

2.学会用千分表测量长度的微小增量。

【实验仪器】

FB712型金属线膨胀系数测量仪一台,千分表(1-0-0.001mm)一个,待测铜管一根。

【实验原理】

材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,少不了要对材料线胀系数做测定。

如图所示,待测铜管的线胀系数为:

式中为温度为摄氏度时的管长,为管受热后温度从升高到时的伸长量,为管受热前后的温度升高量 () 。

该式所定义的线胀系数的物理意义是固体材料在温度区域内,温度每升高一度时材料的相对伸长量,其单位为

【实验内容和步骤】

.把样品铜管安装在测试架上。连接好加热皮管,打开电源开关,以便从仪器面板水位显示器上观察水位情况。水箱容积大约为

.加水步骤:先打开机箱顶部的加水口和后面的溢水管口塑料盖,用漏斗从加水口往系统内加水,管路中的气体将从溢水管口跑出,直到系统的水位计仅有上方一个红灯亮,其余都转变为绿灯时,可以先关闭溢水管口塑料盖。接着可以按下强制冷却按钮,让循环水泵试运行,由于系统内可能存在大量气泡,造成水位计显示虚假水位,只有利用循环水泵试运行过程,把系统内气体排出,这时候水位下降,仪器自动保护停机。

.设置好温度控制器加热温度:金属管加热温度设定值可根据金属管所需要的实际温度值设置。

.将铜管(或铝管)对应的测温传感器信号输出插座与测试仪的介质温度传感器插座相连接。将千分尺装在被测介质铜管(或铝管)的自由伸缩端固定位置上,使千分表测试端与被测介质接触,为了保证接触良好,一般可使千分表初读数为左右,只要把该数值作为初读数对待,不必调零。(如认为有必要,可以通过转动表面,把千分尺主指针读数基本调零,而副指针无调零装置。)

.正常测量时,按下加热按钮(高速或低速均可,但低速档由于功率小,一般最多只能加热到左右),观察被测金属管温度的变化,直至金属管温度等于所需温度值(例如)。.

.测量并记录数据:

当被测介质温度为时,读出千分表数值,记入附表中。接着在温度为时,记录对应的千分表读数

.用逐差法求出铜管的平均伸长量,计算铜管线膨胀系数,与公认值比较求百分误差。

 【数据记录及处理】(铜管初始长度由实验室给出,可视为为常数)

 1.数据记录表与实测数据记录

铜管原长(35摄氏度)117.96mm,铜管线胀系数公认值为1.70×10-5

2. 用逐差法处理数据:

隔四项逐差:

1=(0.6962-0.6560)/4=0.01005mm     ;

2=(0.7060-0.0.6658)/4=0.01005mm

3=(0.7163-0.6758)/4=0.010125mm=0.01012mm     ;

4=(0.7270-0.0.6858)/4=0.01030mm

铜管线胀系数:

与共认值的百分误差为:

 

第二篇:线膨胀系数

线膨胀系数

线膨胀系数

物理名词,有时也称为线弹性系数,指温度每变化1℃材料长度变化的百分率。

亦称线胀系数。固体物质的温度每改变1℃时,其长度的变化和它在0℃时长度之比,叫做“线膨胀系数”。单位为1/开。符号为αl。其定义式是(见图)

即有

lt=l0(l+al△t)。

由于物质的不同,线膨胀系数亦不相同,其数值也与实际温度和确定长度1时所选定的参考温度有关,但由于固体的线膨胀系数变化不大,通常可以忽略,而将a当作与温度无关的常数。

《机械设计手册》上有材料的线膨胀系数可供查询。

线膨胀系数是耐火材料使用时应考虑的重要性能之一。炉窑通常在常温下砌筑,在高温下使用时炉体膨胀。为抵消热膨胀造成的应力,需预留膨胀缝。线膨胀系数是预留膨胀缝和砌体总尺寸结构设计计算的关键参数,它与材料的抗热震性、受热冲击时材料内部热应力的分布和大小密切相关。在复合材料和多相材料制显造中,必须考虑其线膨胀系数的匹配和差异对结构、性能的影响。此外,通过对材料线膨胀系数随温度变化曲线的测定,可以进行材料矿物分析、相变、微裂纹的愈合和扩展等的研究。

线膨胀系数随温度变化的规律类似于热容的变化。a值在很低温度时很小,随温度升高而很快增加,在德拜特征温度以上时趋向于常数。线膨胀系数的绝对值与晶体结构和键强度密切相关。键强度高的材料具有低的线膨胀系数。相对金属材料,耐火材料的键强大,线膨胀系数小。一般氧化物的α值在(8~15)×10K范围,二元硅酸盐物质的α值一般在(5.2~

10)×10K碳化物的a值为(5~7)×10K金刚石为1×1010K石英玻璃则由于其结构松弛,结构中四面体的线膨胀能为结构中的空隙所容纳,而具有极小的a值(O.5×1010K非等轴晶体沿不同晶轴的a值不同,尤其是石墨这类层状结构的物质。石墨的层内结合力强,层向a值很小(1×1010K),层间结合力很弱,层间方向a值高达27×10K对于具有很强的非等轴性的晶体,某一方向上的n值可能为负数。由各向异性多晶体组成的耐火材料和由各相a值不同的多相多晶体组成的耐火材料,在烧成冷却过程中材料内

线膨胀系数

线膨胀系数

会产生内应力。当晶界处于高的应力状态时,材料强度降低,甚至产生微裂纹。气孔率对耐火材料的热膨胀特性也有影响。当气孔使材料内颗粒间的结合变弱时,a值变小。而连续固相中的封闭小气孔几乎不影响a值。多相多晶和复合材料的钱膨胀系数是可以根据物相组成进行计算的。所有计算公式都以各相之间在内应力作用下不产生微裂纹为前提,所以实际上是一种近似的估算,多微裂纹的耐火材料,a的实测值和计算值的偏差可以用作衡量显微结构中缺陷数量的一种尺度。

耐火材料线膨胀系数的常用测量方法是顶杆式间接法(见彩图插页第11页)和望远镜直读法。新的激光法测定线膨胀系数也越来越受到重视。,顶杆法是一种经典方法,采用机械测量原理,即将试样的一端固定在支持器的端头上,另一端与顶杆接触,试样、支持器和顶杆同时加热,试样与这些部件的热膨胀差值被顶杆传递出来,并被测量。这类仪器由于试样位置(立式或卧式)、膨胀量的测量方法(直接测量、电子或光学方法)而区分成多种型号的仪器。应用较普遍的是电感式膨胀仪。它的传感器是差动变压器,也称差动变压器热膨胀仪。由于顶杆和支持器尺寸较长,高温炉的加热条件难于使温度分布均匀一致,顶杆和支持器之间的膨胀量难以相互抵消,所以膨胀的测量值需要校正。望远镜直读法是用双筒望远镜直接观察炉内高温下试样395×1ang相绝;1,tj膨Ii胀值。测量温度可高达2000C,目镜上的测微计直接测量试样伸长量。所用试样较长,加热炉要有足够的恒温带。该方法的缺点是一般不易自动记录。现在已发展了定时照相的自动记录系统。激光法测量热膨胀是近年发展的。它是以一激光束扫描试样,而不断测定试样在加热过程中长度的变化。由于测量精度高、计算机组成的全自动控制、记录和多功能系统而受到欢迎。选择热膨胀测量方法时主要考虑测试范围、待测材料的种类和特性、测量精度和灵敏度等。(摘自中国百科网)

相关推荐