高中数学选修1-2知识点归纳

 

  推理与证明

一.推理:

⑴合情推理:归纳推理类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。

归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。

注:归纳推理是由部分到整体,由个别到一般的推理。

②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。

注:类比推理是特殊到特殊的推理。

⑵演绎推理:从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。

注:演绎推理是由一般到特殊的推理。

“三段论”是演绎推理的一般模式,包括:

⑴大前提---------已知的一般结论;

⑵小前提---------所研究的特殊情况;

⑶结  论---------根据一般原理,对特殊情况得出的判断。

二.证明

⒈直接证明

综合法

一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。综合法又叫顺推法或由因导果法。

分析法

一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。分析法又叫逆推证法或执果索因法。

2.间接证明------反证法

一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。

复数

1.概念:

(1) z=a+bi∈Rb=0 (a,b∈R)z= z2≥0;

(2) z=a+bi是虚数b≠0(a,b∈R);

(3) z=a+bi是纯虚数a=0且b≠0(a,b∈R)z+=0(z≠0)z2<0;

(4) a+bi=c+dia=c且c=d(a,b,c,d∈R);

2.复数的代数形式及其运算:设z1= a + bi , z2 = c + di (a,b,c,d∈R),则:

(1) z 1±z2 = (a + b)± (c + d)i;

(2) z1.z2 = (a+bi)·(c+di)=(ac-bd)+ (ad+bc)i;

(3) z1÷z2 =  (z2≠0) ;

 

第二篇:高中数学选修1-1知识点归纳

高中数学选修1-1知识点总结

第一章 简单逻辑用语

1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.

真命题:判断为真的语句.假命题:判断为假的语句.

2、“若,则”形式的命题中的称为命题的条件称为命题的结论.

3、原命题:“若,则    逆命题:“若,则

否命题:“若,则  逆否命题:“若,则

4、四种命题的真假性之间的关系:

1)两个命题互为逆否命题,它们有相同的真假性;

(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.

5、若,则充分条件必要条件

,则充要条件(充分必要条件).

利用集合间的包含关系:例如:若,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件;

6、逻辑联结词:⑴且(and) :命题形式;⑵或(or):命题形式

⑶非(not):命题形式.

7、⑴全称量词——“所有的”、“任意一个”等,用“”表示;

  全称命题p全称命题p的否定p

⑵存在量词——“存在一个”、“至少有一个”等,用“”表示;

  特称命题p特称命题p的否定p

第二章 圆锥曲线

1、平面内与两个定点的距离之和等于常数(大于)的点的轨迹称为椭圆

即:

这两个定点称为椭圆的焦点两焦点的距离称为椭圆的焦距

2、椭圆的几何性质

3、平面内与两个定点的距离之差的绝对值等于常数(小于)的点的轨迹称为双曲线.即:

这两个定点称为双曲线的焦点两焦点的距离称为双曲线的焦距

4、双曲线的几何性质

5、实轴和虚轴等长的双曲线称为等轴双曲线

6、平面内与一个定点和一条定直线的距离相等的点的轨迹称为抛物线.定点称为抛物线的焦点,定直线称为抛物线的准线.

7、抛物线的几何性质:

8、过抛物线的焦点作垂直于对称轴且交抛物线于两点的线段,称为抛物线的“通径”,即

9、焦半径公式

若点在抛物线上,焦点为,则

若点在抛物线上,焦点为,则

第三章 导数及其应用

1、函数平均变化率: 

2、导数定义:在点处的导数记作;.

3、函数在点处的导数的几何意义是曲线在点处的切线的斜率

4、常见函数的导数公式:

;②;    ③;④

;⑥;    ⑦;⑧

5、导数运算法则:

 

 

6、在某个区间内,,则函数在这个区间内单调递增;

,则函数在这个区间内单调递减

7、求函数的极值的方法是:解方程.当时:

如果在附近的左侧,右侧,那么是极大值;

如果在附近的左侧,右侧,那么是极小值.

8、求函数上的最大值与最小值的步骤是:

求函数内的极值;

将函数的各极值与端点处的函数值比较,其中最大的一个是最大值,最小的一个是最小值.

9、导数在实际问题中的应用:最优化问题。

相关推荐