电力电子技术实验指导书


   实验一  直流斩波电路的性能研究(六种典型线路)

一、实验目的

(1)熟悉直流斩波电路的工作原理。

(2)熟悉各种直流斩波电路的组成及其工作特点。

(3)了解PWM控制与驱动电路的原理及其常用的集成芯片。

二、实验所需挂件及附件

三、实验线路及原理

 1、主电路

 ①、降压斩波电路(Buck Chopper)

降压斩波电路(Buck Chopper)的原理图及工作波形如图4-12所示。图中V为全控型器件,选用IGBT。D为续流二极管。由图4-12b中V的栅极电压波形UGE可知,当V处于通态时,电源Ui向负载供电,UD=Ui。当V处于断态时,负载电流经二极管D续流,电压UD近似为零,至一个周期T结束,再驱动V导通,重复上一周期的过程。负载电压的平均值为:


式中t on为V处于通态的时间,t off为V处于断态的时间,T为开关周期,α为导通占空比,简称占空比或导通比(α=t on/T)。由此可知,输出到负载的电压平均值U O最大为U i,若减小占空比α,则U O随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。

 

(a)电路图                                      (b)波形图

图4-12 降压斩波电路的原理图及波形

②、升压斩波电路(Boost Chopper)

升压斩波电路(Boost Chopper)的原理图及工作波形如图4-13所示。电路也使用一个全控型器件V。由图4-13b中V的栅极电压波形UGE可知,当V处于通态时,电源Ui向电感L1充电,充电电流基本恒定为I1,同时电容C1上的电压向负载供电,因C1值很大,基本保持输出电压UO为恒值。设V处于通态的时间为ton,此阶段电感L1上积蓄的能量为UiI1ton。当V处于断态时Ui和L1共同向电容C1充电,并向负载提供能量。设V处于断态的时间为toff,则在此期间电感L1释放的能量为(UO-Ui) I1ton。当电路工作于稳态时,一个周期T内电感L1积蓄的能量与释放的能量相等,即:

UiI1ton=(UO-Ui) I1toff

 

上式中的T/toff≥1,输出电压高于电源电压,故称该电路为升压斩波电路。

 

(a)电路图                                   (b)波形图

图4-13 升压斩波电路的原理图及波形

③、升降压斩波电路(Boost-Buck Chopper)

升降压斩波电路(Boost-Buck Chopper)的原理图及工作波形如图4-14所示。电路的基本工作原理是:当可控开关V处于通态时,电源Ui经V向电感L1供电使其贮存能量,同时C1维持输出电压UO基本恒定并向负载供电。此后,V关断,电感L1中贮存的能量向负载释放。可见,负载电压为上负下正,与电源电压极性相反。输出电压为:

                                                                                                     

若改变导通比α,则输出电压可以比电源电压高,也可以比电源电压低。当0<α<1/2时为降压,当1/2<α<1时为升压。

 

(a)电路图                                 (b)波形图

图4-14 升降压斩波电路的原理图及波形

④、Cuk斩波电路

Cuk斩波电路的原理图如图4-15所示。电路的基本工作原理是:当可控开关V处于通态时,Ui—L1—V回路和负载R—L2—C2—V回路分别流过电流。当V处于断态时,Ui—L1—C2—D回路和负载R—L2—D回路分别流过电流,输出电压的极性与电源电压极性相反。输出电压为:

 


若改变导通比α,则输出电压可以比电源电压高,也可以比电源电压低。当0<α<1/2时为降压,当1/2<α<1时为升压。

 

图4-15 Cuk斩波电路原理图

⑤、Sepic斩波电路

Sepic斩波电路的原理图如图4-16所示。电路的基本工作原理是:可控开关V处于通态时,Ui—L1—V回路和C2—V—L2回路同时导电,L1和L2贮能。当V处于断态时,Ui—L1—C2—D—R回路及L2—D—R回路同时导电,此阶段Ui和L1既向R供电,同时也向C2充电,C2贮存的能量在V处于通态时向L2转移。输出电压为:

若改变导通比α,则输出电压可以比电源电压高,也可以比电源电压低。当0<α<1/2时为降压,当1/2<α<1时为升压。

图4-16  Sepic斩波电路原理图

⑥、Zeta斩波电路

Zeta斩波电路的原理图如图4-17所示。电路的基本工作原理是:当可控开关V处于通态时,电源Ui经开关V向电感L1贮能。当V处于断态后,L1经D与C2构成振荡回路,其贮存的能量转至C2,至振荡回路电流过零,L1上的能量全部转移至C2上之后,D关断,C2经L2向负载R供电。输出电压为:

图4-17  Zeta斩波电路原理图

若改变导通比α,则输出电压可以比电源电压高,也可以比电源电压低。当0<α<1/2时为降压,当1/2<α<1时为升压。

2、控制与驱动电路

控制电路以SG3525为核心构成,SG3525为美国Silicon General公司生产的专用PWM控制集成电路,其内部电路结构及各引脚功能如图4-18所示,它采用恒频脉宽调制控制方案,内部包含有精密基准源、锯齿波振荡器、误差放大器、比较器、分频器和保护电路等。调节Ur的大小,在A、B两端可输出两个幅度相等、频率相等、相位相差、占空比可调的矩形波(即PWM信号)。它适用于各开关电源、斩波器的控制。详细的工作原理与性能指标可参阅相关的资料。

 


图4-18 SG3525芯片的内部结构与所需的外部组件

四、实验内容

(1)控制与驱动电路的测试

(2)六种直流斩波器的测试

五、思考题

(1)直流斩波电路的工作原理是什么?有哪些结构形式和主要元器件?

(2)为什么在主电路工作时不能用示波器的双踪探头同时对两处波形进行观测?

六、实验方法

    1、控制与驱动电路的测试

(1)启动实验装置电源,开启DJK20控制电路电源开关。

(2)调节PWM脉宽调节电位器改变Ur,用双踪示波器分别观测SG3525的第11脚与第14脚的波形,观测输出PWM信号的变化情况,并填入下表。

(3)用示波器分别观测A、B和PWM信号的波形,记录其波形、频率和幅值,并填入下表。

(4)用双踪示波器的两个探头同时观测11脚和14脚的输出波形,调节PWM脉宽调节电位器,观测两路输出的PWM信号,测出两路信号的相位差,并测出两路PWM信号之间最小的“死区”时间。

2、直流斩波器的测试(使用一个探头观测波形)

斩波电路的输入直流电压Ui由三相调压器输出的单相交流电经DJK20挂箱上的单相桥式整流及电容滤波后得到。接通交流电源,观测Ui波形,记录其平均值(注:本装置限定直流输出最大值为50V,输入交流电压的大小由调压器调节输出)

按下列实验步骤依次对六种典型的直流斩波电路进行测试。

(1)切断电源,根据DJK20上的主电路图,利用面板上的元器件连接好相应的斩波实验线路,并接上电阻负载,负载电流最大值限制在200mA以内。将控制与驱动电路的输出“V-G”、“V-E”分别接至V的G和E端。

(2)检查接线正确,尤其是电解电容的极性是否接反后,接通主电路和控制电路的电源。

(3)用示波器观测PWM信号的波形、UGE的电压波形、UCE的电压波形及输出电压Uo和二极管两端电压UD的波形,注意各波形间的相位关系。

(4)调节PWM脉宽调节电位器改变Ur,观测在不同占空比(α)时,记录Ui、UO和α的数值于下表中,从而画出UO=f(α)的关系曲线。

七、实验报告

(1)分析图4-20中产生PWM信号的工作原理。

(2)整理各组实验数据绘制各直流斩波电路的Ui/UO-α曲线,并作比较与分析。

(3)讨论、分析实验中出现的各种现象。

八、注意事项

(1)在主电路通电后,不能用示波器的两个探头同时观测主电路元器件之间的波形,否则会造成短路。

(2)用示波器两探头同时观测两处波形时,要注意共地问题,否则会造成短路,在观测高压时应衰减10倍,在做直流斩波器测试实验时,最好使用一个探头。

实验二 三相半波可控整流电路实验

一、实验目的

了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻电感性负载时的工作情况。

二、实验所需挂件及附件

三、实验线路及原理

三相半波可控整流电路用了三只晶闸管,与单相电路比较,其输出电压脉动小,输出功率大。不足之处是晶闸管电流即变压器的副边电流在一个周期内只有1/3时间有电流流过,变压器利用率较低。图3-10中晶闸管用DJK02正桥组的三个,电阻R用D42三相可调电阻,将两个900Ω接成并联形式,Ld电感用DJK02面板上的700mH,其三相触发信号由DJK02-1内部提供,只需在其外加一个给定电压接到Uct端即可。直流电压、电流表由DJK02获得。

 

图3-10 三相半波可控整流电路实验原理图

四、实验内容

(1)研究三相半波可控整流电路带电阻性负载。

(2)研究三相半波可控整流电路带电阻电感性负载。

五、预习要求

阅读电力电子技术教材中有关三相半波整流电路的内容。

六、思考题

(1)如何确定三相触发脉冲的相序,主电路输出的三相相序能任意改变吗?

(2)根据所用晶闸管的定额,如何确定整流电路的最大输出电流?

七、实验方法

(1)DJK02和DJK02-1上的“触发电路”调试  

①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。

②将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。

③用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动 “触发脉冲指示”钮子开关,使“窄”的发光管亮。

④观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。

⑤将DJK06上的“给定”输出Ug直接与DJK02-1上的移相控制电压Uct相接,将给定开关S2拨到接地位置(即Uct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔” VT1的输出波形,使α=150°(注意此处的α表示三相晶闸管电路中的移相角,它的0°是从自然换流点开始计算,前面实验中的单相晶闸管电路的0°移相角表示从同步信号过零点开始计算,两者存在相位差,前者比后者滞后30°)

⑥适当增加给定Ug的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。

⑦用8芯的扁平电缆,将DJK02-1面板上“触发脉冲输出”和“触发脉冲输入”相连,使得触发脉冲加到正反桥功放的输入端。

⑧将DJK02-1面板上的Ulf端接地,用20芯的扁平电缆,将DJK02-1的“正桥触发脉冲输出”端和DJK02“正桥触发脉冲输入”端相连,并将DJK02“正桥触发脉冲”的六个开关拨至“通”,观察正桥VT1~VT6晶闸管门极和阴极之间的触发脉冲是否正常。

(2)三相半波可控整流电路带电阻性负载

按图3-10接线,将电阻器放在最大阻值处,按下“启动”按钮,DJK06上的“给定”从零开始,慢慢增加移相电压,使α能从30°到180°范围内调节,用示波器观察并纪录三相电路中α=30°、60°、90°、120°、150°时整流输出电压Ud和晶闸管两端电压UVT的波形,并纪录相应的电源电压U2及Ud的数值于下表中

计算公式:Ud=1.17U2cosα            (0~30O)

            Ud=0.675U2[1+cos(a+)]    (30o~150o)

(3)三相半波整流带电阻电感性负载

将DJK02上700mH的电抗器与负载电阻R串联后接入主电路,观察不同移相角α时Ud、Id的输出波形,并记录相应的电源电压U2及Ud、Id值,画出α=90o时的Ud及Id波形图。

八、实验报告

绘出当α=90o时,整流电路供电给电阻性负载、电阻电感性负载时的Ud及Id的波形,并进行分析讨论。

九、注意事项

(1)可参考实验六的注意事项 (1)、(2)。

(2)整流电路与三相电源连接时,一定要注意相序,必须一一对应。

实验三  单相交流调压电路实验

一、实验目的

   (1)加深理解单相交流调压电路的工作原理。

   (2)加深理解单相交流调压电路带电感性负载对脉冲及移相范围的要求。

   (3)了解KC05晶闸管移相触发器的原理和应用。

实验所需挂件及附件

三、实验线路及原理

本实验采用KCO5晶闸管集成移相触发器。该触发器适用于双向晶闸管或两个反向并联晶闸管电路的交流相位控制,具有锯齿波线性好、移相范围宽、控制方式简单、易于集中控制、有失交保护、输出电流大等优点。

单相晶闸管交流调压器的主电路由两个反向并联的晶闸管组成,如图3-15所示。

图中电阻R用D42三相可调电阻,将两个900Ω接成并联接法,晶闸管则利用DJK02上的反桥元件,交流电压、电流表由DJK01控制屏上得到,电抗器Ld从DJK02上得到,用700mH。

 

图 3-15  单相交流调压主电路原理图

四、实验内容

(1)KC05集成移相触发电路的调试。

(2)单相交流调压电路带电阻性负载。

(3)单相交流调压电路带电阻电感性负载。

五、预习要求

(1)阅读电力电子技术教材中有关交流调压的内容,掌握交流调压的工作原理。

(2)学习本教材1-3节中有关单相交流调压触发电路的内容,了解KCO5晶闸管触发芯片的工作原理及在单相交流调压电路中的应用。

六、思考题

(1)交流调压在带电感性负载时可能会出现什么现象?为什么?如何解决?

(2)交流调压有哪些控制方式? 有哪些应用场合?

七、实验方法

(l)KCO5集成晶闸管移相触发电路调试

将DJK01电源控制屏的电源选择开关打到“直流调速”侧使输出线电压为200V,用两根导线将200V交流电压接到DJK03的“外接220V”端,按下“启动”按钮,打开DJK03电源开关,用示波器观察“1”~“5”端及脉冲输出的波形。调节电位器RP1,观察锯齿波斜率是否变化,调节RP2,观察输出脉冲的移相范围如何变化,移相能否达到170°,记录上述过程中观察到的各点电压波形。

(2)单相交流调压带电阻性负载

将DJKO2面板上的两个晶闸管反向并联而构成交流调压器,将触发器的输出脉冲端“G1”、“K1”、“G2”和“K2”分别接至主电路相应晶闸管的门极和阴极。接上电阻性负载,用示波器观察负载电压、晶闸管两端电压UvT的波形。调节“单相调压触发电路”上的电位器RP2,观察在不同α角时各点波形的变化,并记录α=30°、60°、90°、120°时的波形。

(3)单相交流调压接电阻电感性负载

①在进行电阻电感性负载实验时,需要调节负载阻抗角的大小,因此应该知道电抗器的内阻和电感量。常采用直流伏安法来测量内阻,如图3-16所示。电抗器的内阻为:

RL=UL/I                                              (3-1)

电抗器的电感量可采用交流伏安法测量,如图3-17所示。由于电流大时,对电抗器的电感量影响较大,采用自耦调压器调压,多测几次取其平均值,从而可得到交流阻抗。

 

图3-16用直流伏安法测电抗器内阻          图3-17用交流伏安法测定电感量

                                                (3-2)

电抗器的电感为


                                                             (3-3)

这样,即可求得负载阻抗角

在实验中,欲改变阻抗角,只需改变滑线变阻器R的电阻值即可。

②切断电源,将L与R串联,改接为电阻电感性负载。按下“启动”按钮,用双踪示波器同时观察负载电压U1和负载电流I1的波形。调节R的数值,使阻抗角为一定值,观察在不同α角时波形的变化情况, 记录α>φ、α= φ、α<φ三种情况下负载两端的电压U1和流过负载的电流I1波形。

八、实验报告

(1)整理、画出实验中所记录的各类波形。

(2)分析电阻电感性负载时,α角与φ角相应关系的变化对调压器工作的影响。

(3)分析实验中出现的各种问题。

九、注意事项

(1)可参考实验六的注意事项(1)和(2)

(2)触发脉冲是从外部接入DJKO2面板上晶闸管的门极和阴极,此时,应将所用晶闸管对应的正桥触发脉冲或反桥触发脉冲的开关拨向“断”的位置,并将Ulf及Ulr悬空,避免误触发。

(3)可以用DJK02-1上的触发电路来触发晶闸管。

(4)由于“G”、“K“输出端有电容影响,故观察触发脉冲电压波形时,需将输出端“G”和“K”分别接到晶闸管的门极和阴极(或者也可用约100Ω左右阻值的电阻接到“G”、“K”两端,来模拟晶闸管门极与阴极的阻值),否则,无法观察到正确的脉冲波形。

相关推荐