实验3 差动变压器性能

电子信息工程系实验报告

课程名称:传感与检测                             

实验项目名称:实验3 差动变压器性能              实验时间:20##-6-11     

班级:电信092             姓名:XXX           学号:910706201      

                                                                                                                                             

:

了解差动变压器式电感传感器的原理和工作情况。

:

差动变压器式电感传感器、音频振荡器、测微器、V/F表、双通道示波器。

:

差动变压器的基本元件有衔铁、初级线圈、次级线圈和线圈骨架等。初级线圈作为差动变压器激励部分,相当于变压器的原边。而次级线圈由两个结构尺寸和参数相同的两个线圈反相串接而成,形成变压器的副边。根据内外层排列不同,差动变压器有二段式和三段式,本实验采用三段式结构。

传感器随着被测物体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减小,将两只次级反相串接,就为其差动输出,该输出电势则反映出被测物体的移动量。

果:

(1)根据图接线,将差动变压器、音频振荡器(必须LV输出)、双踪示波器连接起来,组成一个测量线路。开启主、副电源,将示波器探头分别接至差动变压器的输入和输出端,调节差动变压器源边线圈音频振荡器激励信号峰峰值为2V。

(2)用手提压变压器磁芯,观察示波器第二通道波形是否能过零翻转,如不能则改变两个次级线圈的串接端。

(3)转动测微头使测微头与振动平台吸合,再向上转动测微头5mm,使振动平台往上位移。

(4)向下旋钮测微头,使振动平台产生位移。每位移0.2mm,用示波器读出差动变压器输出端的峰峰值填入下表,根据所得数据计算灵敏度S=△V/△X(式中△V为电压变化,△X为相应振动平台的位移变化),作V-X关系曲线。读数过程中应注意初、次级波形的相应关系。起始位移为5mm,输入电压为Vi=0.2V;

灵敏度计算:

平均灵敏度为:S=(2.30+1.90+2.07+1.75+1.56+1.57+1.46+1.375+1.4)/9=1.709V/mm;

V-X关系曲线如下图所示:

       

题:

    (1)当差动变压器中磁棒的位置由上到下变化时,双线示波器观察到的波形相位会发生怎样的变化?

答:零点残余电压的波形十分复杂,主要是基波和高次谐波组成。基波的产生主要是传感器的两次级绕组的电器参数,几何尺寸不对称,导致它们产生的感应电势幅值不等、相位不同,因此不论怎样调整衔铁位置,两线圈中感应电势都不能完全抵消。高次谐波中起主要作用的是三次谐波,产生的原因是由于磁性材料磁化曲线的非线性(磁饱和、磁带)。

    (2)用测微头调节振动平台位置,使示波器上观察到的差动变压器的输出阻抗端信号为最小,这个最小电压是什么?由于什么原因造成?

答:最小电压被称为零点残余电压。当活动衔铁向上移动时,同于磁阻的影响,ω2a 中磁通将大于ω2b,使M1>M2,因而E2增加,而E2b减小。反之,E2b 增加,E2a减小,因为U2=E2a-E2b,所以当E2a、E2b 随着衔铁位移x 变化时,U2 也必将随x 变化。下图给出了变压器输出电压U2 与活动衔铁位移x 的关系曲线。实际上,当衔铁位于中心位置时,差动变压器输出电压并不等于零,我们把差动变压器在零位移时的输出电压称为零点残余电压,记作Ux,它的存在使传感器的输出特性曲线不过零点,造成实际特性与理论特性不完全一致。零点残余电压的产生的原因主要是传感器的两次级绕组的电气参数与几何尺寸不对称,以及磁性材料的非线性等问题引起的。

得:

通过该实验了解了差动变压器式电感传感器的工作原理和工作情况并掌握了差动变压器的性能及测试方法。差变电压器的两个次级线圈必须接成差动形式,及同名端相连。

 

第二篇:实验三、四 差动变压器的性能及零点残余误差消除实验

实验三  差动变压器的性能实验

一、实验目的:了解差动变压器的工作原理和特性。

二、基本原理:差动变压器由一只初级线圈和二只次线圈及一个铁芯组成,根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。其输出电势反映出被测体的移动量。

三、需用器件与单元:差动变压器实验模板、测微头、双踪示波器、差动变压器、音频信号源、直流电源(音频振荡器)、万用表。

四、实验步骤:

1、根据图3-1,将差动变压器装在差动变压器实验模板上。

图3-1差动变压器电容传感器安装示意图

2、在模块上按图3-2接线,音频振荡器信号必须从主控箱中的Lv端子输出,调节音频振荡器的频率,输出频率为4-5KHz(可用主控箱的频率表输入Fin来监测)。调节输出幅度为峰-峰值Vp-p=2V(可用示波器监测:X轴为0.2ms/div)。图中1、2、3、4、5、6为连接线插座的编号。接线时,航空插头上的号码与之对应。当然不看插孔号码,也可以判别初次级线圈及次级同名端。判别初次线图及次级线圈同中端方法如下:设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图3-2接线。当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅度值变化很大,基本上能过零点,而且相应与初级线圈波形(Lv音频信号Vp-p=2v波形)比较能同相或反相变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接再判别直到正确为止。图中(1)、(2)、(3)、(4)为实验模块中的插孔编号。

3、旋动测微头,使示波器第二通道显示的波形峰-峰值Vp-p为最小,这时可以左右位移,假设其中一个方向为正位移,另一个方向位称为负,从Vp-p最小开始旋动测微头,每隔0.5mm从示波器上读出输出电压Vp-p值,填入下表3-1,再人Vp-p最小处反向位移做实验,在实验过程中,注意左、右位移时,初、次级波形的相位关系。

图3-2差动变压器连结示意图

 

4、实验过程中注意差动变压器输出的最小值即为差动变压器的零点残余电压大小。根据表3-1画出Vop-p-X曲线,作出量程为±1mm、±3mm灵敏度和非线性误差。

表(3-1)差动变压器位移X值与输出电压数据表

五、思考题:

试分析差动变压器与一般电源变压器的异同?

实验四  差动变压器零残电压的补偿

实验目的:

由于零残电压的存在会造成差动变压器零点附近的不灵敏区,此电压经过放大器还会使放大器未级趋向饱和,影响电路正常工作,因此必须采用适当的方法进行补偿使之减小。

实验原理:

零残电压中主要包含两种波形成份:

1、基波分量:这是由于差动变压器二个次级绕组因材料或工艺差异造成等效电路参数(M、L、R)不同,线圈中的铜损电阻及导磁材料的铁损、线圈中线间电容的存在,都使得激励电流与所产生的磁通不同相。

2、高次谐波:主要是由导磁材料磁化曲线的非线性引起,由于磁滞损耗和铁磁饱和的影响,使激励电流与磁通波形不一致,产生了非正弦波(主要是三次谐波)磁通,从而在二次绕组中感应出非正弦波的电动势。

减少零残电压的办法是:(1)从设计和工艺制作上尽量保证线路和磁路的对称。(2)采用相敏检波电路。(3)选用补偿电路。

 

(图33

实验所需部件:

差动变压器、电感传感器实验模块、音频信号源、螺旋测微仪、万用电表

实验步骤:

1、按图(3-3)接线,差动放大器增益置最大。

2、打开主机电源,调节音频输出频率至10KHZ左右,音频幅值Vp-p=2V。

调节铁芯在线圈中的位置,使差动放大器输出的电压波形最小,再调节电桥中WD、WA电位器,使输出更趋减小。

表(3-2)差动变压器消除零点残余电压实验数据表

相关推荐