BIM软件使用的体会

时至今日,关于BIM技术的话题已不是要不要采用这项技术,而是如何采用,以及如何顺利过渡的问题。在应用及推广BIM的过程中,我们发现有必要消除几个关于BIM的认识误区:

第一个误区是:认为BIM是高端技术。这是方向性的误解,BIM是未来的“大众”设计技术,它还将成为每一位设计师和工程师必备的执业资格条件。

第二个误区是:BIM很难掌握。BIM的确难以掌握,但这仅是相对于AutoCAD等2D设计软件来说的。BIM设计与2D设计的不同之处在于BIM中的每一个环节、每一个步骤都“有法可依”并“有法必依”,掌握这些规则需要更多时间和精力,但掌握之后并不需要高深的应用技巧或深厚的计算机基础。

第三个误区与第二个想反,认为BIM可以快速掌握。持这种观点很容易在学习和实施的过程中产生挫折感,甚至半途而废。BIM软件供应商以及类似于“三天速成”之类的教程都可能给初学者以误解,认为BIM技术一两周就可以掌握。实际上,掌握BIM需要的是几个月而不是几周,并且需要一个BIM环境

第四个误区,是认为BIM能大幅提高设计院的生产效率。实际上,BIM技术提高的更多的是设计+建造+运营的综合效率,而非单一设计环节的效率。对设计环节来说,BIM可能反而增加了信息量的输入,这会加大部分设计人员的工作量,但这会通过体现协作优势得到加倍的补偿。长远来看,BIM的综合效率会使得采用BIM技术的设计院所在投标过程中具有更大的优势。

第五个误区,是认为单位有一个小组可以搞BIM就可以了。实际上,未来只有全体采用BIM,才能体现出单位竞争力。

本文将结合清华大学建筑设计研究院参与的一个管线综合项目实例,阐述BIM技术与常规设计方式的不同点与二者的接合和过渡办法。

2. 项目概况

实施BIM管线综合的MEP项目为清华大学新建医院一期工程门诊综合楼,总用地面积为 10.14 公顷,总建筑面积为94510平方米,地下2层,地上13层;建筑高度为63.45米;属于一类高层建筑。该医院建筑构造复杂、布置变化多、管线最复杂的地下二层到地上五层均为不同的标准层,且层高也不一致。各类风管、水管不仅种类多、分布密集,而且要求布置精准,并尽量节省空间。对于这个项目,依靠通常的2D设计手段已很难完成。在这种情况下,BIM中心与该项目设计人员合作,采用 Revit MEP进行了3D管线布置,与设计人员一起在3D状态下成功进行了管线调整,不仅避免了碰撞,也尽可能地提升了房间使用空间高度。在此过程中,还有效地开展了BIM培训及推广工作。

3. 整体组织

该项目采取传统设计与BIM设计相结合的方式进行,项目组分为设计团队与BIM团队,两个团队的协作贯穿项目始终。软件方面,BIM团队主要采用了Revit 2011系列中的Architecture和MEP,另外还有一些外围辅助软件,如Autodesk Design Review2011等。

4. 团队协作模式

BIM团队与设计团队的协作方式分为两个阶段,初期阶段,二者相对较独立,合作模式如下图所示:

设计团队与BIM团队相对独立的协作模式

此阶段,设计团队采用传统2D设计方式进行,BIM团队基于其设计成果(2D设计图)创建3D BIM模型。然后,设计团队与BIM团队合作,基于3D管线模型进行碰撞检查以及管道调整。调整完成后,再自动形成2D参考图,设计团队基于2D参考图调整其设计成果,形成最终的设计交付文件。同时,BIM团队基于3D模型形成3D发布文件,该文件将取代通常的2D管线综合图,该文件可利用免费的Autodesk Design Review2011查看。

由于设计团队此阶段几乎不需要任何BIM培训,因此对工作的切入是非常有利的。采用这种方式,BIM团队与设计团队顺利完成了一个标准层的管线布置与调整工作。在此过程中,设计团队也切身体验了BIM设计的优势,对BIM有了深刻的认识,对接下来的BIM培训打下了良好基础。

接下来,BIM中心对设计团队进行相关BIM培训。由于是结合实际项目的培训,培训非常着重实用性,让每一位接受培训的设计人员能够在短期内“上手”,在BIM中心的帮助下开始BIM设计。这是很有效的培训方式。脱离生产的系统的培训可能会耗费相当长的时间,并且由于缺乏实战关联,培训的实用性往往不强。

另外,BIM中心负责做好所有的周边工作,如设备配备、软件安装及调试、网络设置,以及项目相关的系统模板设置、常用族的开发、标准定制、协同辅助等等,没有BIM团队的帮助,这些环节会耗费设计团队相当多的时间和精力,应该说这也是BIM设计长时间以来不易推广的重要原因。

设计团队完成BIM转化之后,工作配合的模式就有了变化,BIM中心更多的是发挥其支撑作用。此阶段,BIM中心将以发挥技术支撑作用为主。设计团队直接采用BIM技术后,由于节省了前后两方面的成果重录入及校核工作,工作效率比前一种过渡式的配合方式大为提高。

5. 协同工作

BIM协同设计与当前2D CAD方式下的基于网络沟通与组织的协同设计是完全不同的。BIM设计中,协同即是设计手段本身而非辅助工具。

打个比方说,以前的2D协同设计,是采取网络沟通手段方便大家互相参照对方的设计文件,即需要的时候可以很方便地拿过来参考一下,知道到哪里找、以及怎么找到需要的东西,省去了设计人员网上找文件的过程。而BIM的协同,则是大家自一开始就在共同构建一个虚拟的模型,包含建筑、结构、设备、管道等等,大家仿佛同处于一个虚拟模型之中一同工作。你会看到别人搭建和布置的东西,别人也会实时看到你的,碰撞与矛盾都是可以即时发现,你可以随时就一个碰撞同其它工种的工程师展开讨论。

在Revit中,中心文件是这个虚拟模型的代表,基于中心文件可以很容易地实现前述的协同模式,如下图所示:

在Revit中,从技术角度实现前述协同是很容易的

可以说,没有协同,就谈不上BIM。在Revit中,从技术角度实现前述协同是很容易的,也很容易学习和掌握。相对来说,人们更需要接受的是设计方式的改变,协同从根本上摒弃了以往单兵作战的设计方式。BIM的协同需要良好的项目规划以及成员工作关系的划分及组织,它更多依靠管理者的协调作用。Revit中,每一个工作单元叫做一个工作集(Workset),规划合理的工作集会使得项目逻辑合理、结构清晰,并且除协同之外,还可以发挥许多衍生的功能,这在后面还将述及。

6.结构模型创建

为管道碰撞检查的目的,我们需要创建结构模型而非建筑模型,但由于建筑墙体对管道布置同样有影响,因此我们创建的模型中也包含了建筑墙体。

带建筑墙的结构内部

对于高层建筑,按层划分工作集是一种有效的办法。Revit虽然有层的概念,但并没有直接控制层的显示的办法。工作集作为一种协同工作概念下的操作单元,还可以被用作控制层显示的最有效的手段。下图显示的模型中,通过工作集隐藏了中间两层的结构,并隐藏了各层楼板的显示:

通过工作集隐藏了中间两层的结构,并隐藏了各层楼板的显示

与AutoCAD不同的是,Revit中没有“图层”的概念。尽管其它一些BIM软件或造型设计软件如ArchiCAD、Bentley Architectur、Bentley Structure、Rhino等仍然使用图层做为重要工具,Revit还是走上了另外的道路。Revit更倾向于按构件功能、类别来区分并控制。Revit将构件按功能、类型做了很多分类,我们可以直接用这些分类控制构件的显示。例如,可以通过Revit的显示开关直接控制楼板或梁、柱的显示。

而对于其它一些需要用户定制的分类标准,如高度小于800的梁、或顶标高比楼层标高低50的梁等,Revit提供了过滤器以供使用。利用过渡器工具,我们可以随心所欲地按自己的标准把构件分类,控制它们的显示效果,如是否显示,显示为什么颜色、是否透明等等。总的来说,Revit按类型分类的手段也是很丰富的,熟练运用会起到很好的效果,缺点是定制不够直观,初学者掌握起来不象图层那样便捷。

7. 链接结构模型

管线建模时,我们并不直接在结构模型中进行。对于性质不同的工种(结构与MEP),Revit不推荐将它们的模型合而为一,而相互保持独立。链接是保持二者参照的有效手段。

在本医院项目中,我们通过链接的方式,将结构模型链接到MEP模型中作为参考。通过中心文件的链接,可以确保结构模型修改后,MEP模型中的结构也会自动更新。

Revit2011版本一个重大的更新是可以在主模型(MEP模型)中控制链接模型(结构模型)中的工作集的显示,这样,我们就可以在MEP模型中,按需要打开结构层进行参考。在Revit2010中,这项功能要靠其它手段来实现,过程远为繁琐。

8.MEP模型布置及调整

由于是高层结构,工作集的划分同时考虑了管道所在层及管道类型。下图为第4层工作集的划分情况,从中可以看出管线的复杂程度,这也再次说明了BIM设计更多的是管理和协调的问题:

Revit布置和调整各种管道

在Revit布置和调整各种管道时,由于涉及到BIM团队和设计人员的配合,需要更加明确管道布置的规则和优先级。

一般来说,无压有坡度管是关键,如污废水管,空调冷凝水管、蒸气凝水管、雨水管等,这些管道的布置要优先考虑,因为它们要求一定的单向坡度,以便管中液体能够在自重作用下顺利流动,这类管后期调整的余地不大,布置不当甚至影响建筑吊顶高度。

各类风管尽可能靠上布置,对于比较紧张的无压有坡管,要考虑风管避让它们。

其它管道,原则上本着有压有坡管优于于有压无坡管,上下转弯有限制的管优先于可自由转弯的管,以及小管让大管等指导性原则进行,实际调整中再结合实际情况进行灵活调整。

比较自由的管道,如医疗气体管、通气管等优先级可适当靠后。但需要注意相应的特殊事项,如通气管不能形成U型弯,以免形成凝水堵塞管道。

热水供、回水管,空调冷热水管等,按一定坡度“抬头”走,但延伸较长时需要较大的竖向空间,需要在一定距离后向下折,此时需要注意在下折的地方预装放气阀。风机盘管本身可以当做放气阀用。

考虑到结构跨度大,梁高有一定的空间,经协调我们将消防管穿梁布置,有效地节省了布置高度。

对于竖向空间紧张的区域,我们还考虑增设同类管道避免空间交叉的办法。如:为避免污废水管交叉,我们将污水管分为并行的两根,引入管井后再交叉合并,这也有效降低了的空间高度需求。

地下一层结构及管道布置

管线碰撞检查是Revit提供的一个有效工具,可以帮助我们检查需要查看的部分或全楼的碰撞情况,碰撞可以有选择地进行,如只检查风管与结构的碰撞、风管之间的相互碰撞、或污水管与风管的碰撞等等。但Revit提供的碰撞检查功能比较单纯,只能检查到管道之间的硬碰撞,条件更复杂的碰撞检查,如间距检查,则需要导入到Navisworks软件中进行。

9. 困难与不足

仅从设计单位内部来说,实施BIM最大的困难在于初期环境的建设。这可概括为以下几点:

首先,人们从2D到BIM设计的观念转变并非易事。这在前面已经述及,不再重复。

其次,Revit系列软件的本地化程度仍需要进一步提高。我们在实施过程中,制作了大量符合中国标准并适合我院做法的族,如各种风机盘管、管道连接件,结构构件如变截面梁,门型梁等,并对模板进行了多处定制以适合中国规范。我国的设备厂商尚未象国外厂商那样直接提供产品的族文件,这使得模型在造价估算及运营管理上缺乏依据,模型的精确性受到影响。欲使BIM在建筑全生命周期发挥作用,这个问题必须解决。

另外,软件运行效率依然存在问题。随着Revit2011版本的推出,软件运行效率较之前的版本有了较大提升,曾被广泛诟病的硬件需求过高的问题得到了一定缓解。但是,为提高生产效率,Revit依然需要强大的硬件作为支撑,为此,中心采用了先进的图形工作站及Windows7 64位操作系统运行Revit,实施BIM的成本问题依旧不容忽视。我们期待Revit在优化程序内核,提高运行效率方面加快研发步伐。

最后,培训所需要的时间、资金成本需要仔细规划,合理安排,尽量避免影响正常生产。

总之,初期较高的综合实施成本,包括软硬件投资、人才招募、BIM团队建设、管理跟进、人员培训等均是阻碍BIM推行的因素。

 

第二篇:浅谈对BIM中结构三维设计的一点体会

浅谈对BIM中结构三维设计的一点体会

作者:邓京楠

摘要

本文结合笔者自身的设计和施工服务经验,简单介绍了笔者对于bim中结构三维设计的实用价值和发展方向的一些思考。文章内容主要分为两部分:第一部分针对结构三维设计对本专业的实用价值进行叙述;第二部分内容是对结构三维设计在bim中发挥的作用以及使用方向和目标的探索。

关键词:bim(建筑信息化模型),结构三维设计

引言

从20xx年进入公司,笔者就开始参加公司举办的三维设计软件培训,笔者公司选用的三维设计平台是revit,除了接触最多的结构专业软件revit structure外,还包括工艺专业revit mep和建筑专业revit architecture(软件版本升级到2013之后,则全部集合到一个软件中)。因此以下文章中针对三维设计的描述都是基于revit平台之上。

笔者最初理解的三维设计就是简单把二维图形转换成三维立体的图形,使用中才慢慢了解到Revit只是实现BIM技术的一种工具。BIM的全拼是Building Information Modeling,即建筑信息模型,是以建筑工程项目的各项相关信息数据作为模型的基础,进行建筑模型的建立,比如同样绘制一根梁,在二维cad里梁就是2根线;但在BIM里梁则为一个三维实体,包含了梁的截面尺寸和长度。不仅如此,梁还可以包括自身的混凝土等级、保护层厚度、配筋情况以及建造阶段等信息。因此这里说的三维比起二维,包含的信息要广泛的多。

文章中首先介绍笔者使用结构三维设计的现状与总结,包括三维结构建模过程、三维建模与结构分析计算、如何在三维设计中保留并实现二维平法出图三个方面;之后是关于结构三维设计如何在bim中实现协同设计和协同作业的探索。通过以上两方面,浅析结构专业进行三维设计的优势和重要意义。

一.结构三维设计的现状与优势

笔者认为,结构三维设计有两大优势:第一,所有的结构件都是三维实体,三维显示直观并可实时观察,让结构设计师能够观察结构空间形式、结构布置的合理性及结构细部构造特征,能很好地检测设计的准确性;第二,三维模型与二维平面相关联,对一个构件的尺寸进行修改后,所有平、立、剖面上的相应尺寸数据都会进行自动修改,这样可以大量减少重复修改的工作量,提高工作效率并减少遗漏。因此设计者可以把大部分精力花在对结构方案设计的优化上。以下结合笔者的工作经验,介绍现阶段使用revit进行三维设计的情况,并简要分析如何发挥其优势。

1.三维设计与创建结构模型

结构设计中,建立贴合实际的建筑结构模型是非常重要的。在Revit中,族是模型的基本元素,所有的结构件,如梁、柱、板、基础等等都是各种类型的族。

Revit自身提供了一个很丰富的族库,用户可以直接载入使用。除了应用自身的族库外,Revit提供的族编辑也能够让用户自由定义其他类型的族,比如矿仓、筏板基础等。能否根据需要灵活定义族是准确、高效完成项目的基础。因此要发挥三维建模的优势,最终就落在如何建好族上,笔者对此进行了总结:

(1)选合适的族模板。Revit根据族的用途和类型,提供了很多种类的族模板,在自建族时首先需要选择合适的族模板。族模板预定义了新建族所属的族类别和一些默认参数。参数类型包括“族参数”和“共享参数”。“族参数”又包括“实例”和“类型”两类,实例参数将出现在族“图元属性”对话框中,而类型参数出现在“类型属性”对话框中; Revit允许在新建族中按要求添加需要的参数。

当把完成的族载入到项目中调用时,Revit会根据初始选择的族模板所属的族类别,被归类到设计栏对应命令的类型选择器中。比如我创建一个框架梁类别的族,那它将自动归类在“梁”命令中;此外在明细表中,也会被统计在该类别内,这在之后的算量统计中是可以被使用的。值得注意的是,明细表中可以统计的族类型是固定的,像在常规类型模板下建的族就无法在明细表中统计体积、长度、宽度等,只能统计个数。

(2)创建准确的实体形状

选定了族模板后,就可以开始创建族的实体形状。空心形状和实心形状是最重要的两个命令。实心形状用来创建实体模型,空心形状则用来剪切洞口。实心和空心形状都包括拉伸、融合、旋转、放样、放样融合五项功能。从普通的规则形体到无法用平面图形表示的空间体量,都可以通过这些命令来完成。

(3)族的参数设置

之所以说族可以提升建模效率,关键还在于族的参数化。参数属性包括:基本属性文本型/数字型;外部属性几何型/描述型/功能型等等,这里是指当前参数是用来描述模型的几何参量还是其它;内部属性确值型/值域型/函数型等。构件通过参数化,当修改几何参数数值时,相应的实体也会发生改变;增加描述型的参数,可以给族添加更丰富的注释信息。一般来说,某一个族中的参数,只能在该族中使用,如果想要几个族同时使用一个参数就需要使用共享参数。这一点在实现平法出图中有详细说明。

此外,通过运用函数型参数等,还可以将参数进行常规的数学运算和逻辑运算外,甚至利用一些小技巧来实现一些包括取整,奇数和偶数等功能,这里就不再详述。总之,参数的多样化决定了信息的多样化,这也是bim信息化模型的核心之一。

2.revit三维模型与结构分析模型的互导

Revit软件本身不能进行结构计算分析,但它可以通过Revit API(应用编程接口)连接的第三方分析应用,如R-STARCAD就是由revit和PKPM共同开发的、能够实现PKPM与Revit 结构模型转换的插件(插件会有一定的版本要求)。Revit侧重于BIM建模,跨专业实现协调设计;而PKPM则在结构分析计算方面与国内规范结合最为紧密。通过模型互导,结构工程师在使用不同软件时可以极大的减少重复建模的工作量,从而提高工作效率并降低出错率。

在模型导入导出的过程中有几点需要注意:由revit模型导入到PKPM时,需注意“导出高

级选项”的设置:模型构件选项中我们可以设置需导出的构件种类,包括轴线,结构梁、支撑、柱、墙、等。“特殊处理选项”中在设置偏心归并距离时需特别谨慎。“偏心”均为节点对轴线交点或定位网格对轴线的偏移距离,偏心的正负号跟PKPM的定义是相同的。因为PKPM中一个节点或网格只能布置一个构件,所以这个偏心归并距离的设置要避免将RST模型中的定位节点或定位网格归并到同一段轴线端点上,以防止构件丢失。这个偏心值的设置一般取模型中构件的最小间距和截面最大宽度的最小值。

关于截面选项的设置问题。R-STARCAD对revit的常用族库进行了参数的智能匹配,只需对各个截面的匹配规则进行确认即可。例如我们选定某一截面尺寸的结构柱,会显示该族对性应的PKPM中的截面参数和RST中的族形状预览图。右侧属性表会列出可以修改的族参数匹配规则,如果软件的自动匹配有误,可以手工选择对应的截面参数值,全部参数值确认后,点击“应用”即可确认匹配。对模型中某些不能智能识别的族,需要根据匹配规则指定对应关系,完成手工匹配。完成界面匹配的族会在其最前端显示出红勾。

最后达到的效果:(1)RST中提供了大量预先定义好且与PKPM对应的族文件,包括多种形状和规格的梁、柱和支撑,可以保证在转换过程中,梁、柱和支撑对应转换,并可以出现在PKPM或revit的梁、柱和支撑的构件表中。(2).在RST和PKPM中模型构件各自有很多种偏心形式,在相互转换后梁柱偏心形式和尺寸保持了一致。 (3).模型中的层间梁和斜梁在相互转换后能够保持一致。(4).模型中剪力墙的洞口设置相互转换后保持一致,双梁保持一致。这两点也体现了三维模型设计的优势。

随着各软件公司投入的不断加大,以及一线设计人员的实践反馈。插件也在不断更新完善中,模型互导包含的信息越来越多,比如梁构件,从只包含几何数据信息到后来可以包含配筋信息等。随着国家相应标准的建立,软件之间模型信息的互通将更加完善。

3. 结构三维设计实现平法出图

平法是在二维图纸上表达钢筋信息一种简化,而钢筋信息是三维结构模型的组成部分。从二维平法抽象注释符号所表示的钢筋信息到三维模型中可存储和交换的数据形式,需要建立一个过渡来将他们联系起来,接下来就简要叙述笔者尝试利用revit中共享参数实现梁平法标注的过程。

梁配筋平法标注需要的参数包括梁编号、箍筋类型、架立筋类型、底筋类型、梁宽和梁高。实现方法是在梁构件族里添加以上参数,并让标签族读取这些参数。为了让梁族和标签族能够同时调用这些参数,就需要使用到共享参数功能。

在族的管理选项里有共享参数的按钮,点击后会跳出共享参数编辑对话框。首先要创建一个共享参数文件,把需要的参数添加进去。然后建梁族和标签族,建族后在每个族里添加需要的参数并指定参数类型。建梁族时可以选择系统自带的族模板,把这些共享参数添加到族类型的参数里。有一点需要注意,系统自带的梁族里,梁宽和梁高参数分别为b和h,因为这两个参数不是共享参数,不能被其他族使用,因此可以变通一下,将共享参数中的“梁宽”和“梁高”分别与初始参数里的b和h对应,这样就可以让标签族读取梁宽和梁高的数据。建标记族时先选择结构框架标记族作为模板,然后编辑标签,在类别参数中添加与梁族一样的共享参数;添加完成后,可以在标签参数栏中对这些共享参数的顺序、布置进行编辑,比如增加括号、空格或者换行等,这样就可以在格式上符合平法要求。

完成这两个族的编辑就有了实现梁配筋平法标记的工具,通过将配筋等信息输入到梁模型中,就可以使用梁标签标记出平法表示。此外共享参数还可以运用到明细表和过滤器中,作为可被选中的字段和类别。在三维设计中的平法除了满足现有的出图习惯外,也有自己的特点:首先,模型中的平法注释符号不仅仅是孤立的注释和代号,而是包括了进一步深化这些实体所需要的数值化信息,这些信息可以提取、交换和分析。其次,设计师进行的平法标注是参数化设计过程。设计师可以快速浏览到各种设计信息,通过调整和修改参数,可以实时进行方案比选和配筋优化。设计师对构件的修改( 如: 移动、改尺寸) 可以立刻传递到平法图中,平法图上对应的注释符号,包括标高和所有的几何信息,均可自动更新。

二.结构三维设计如何参与协同设计和协同作业

Revit不是一款高级的三维cad,要发挥它真正的优势需要回到三维设计的核心概念BIM上来,而BIM的核心应该是三维协同技术。所谓三维协同分为协同设计和协同作业。协同设计是针对设计院专业内、专业间进行数据和文件交互、沟通交流等的协同工作。协同作业是针对项目业主、设计方、施工方、监理方、材料供应商、运营商等与项目相关各方,进行文件交付、沟通交流等的协同工作。根据结构三维设计自身的特点,笔者认为可以在以下两大方面发挥其作用。

1.协同设计实施方面

笔者所在公司承接的烧结、球团和采选等项目,工艺流程复杂、设备种类繁多,各建、构筑物结构形式多样。每个工程到每个子项都需要公司多个设计部门的通力合作。一些复杂的厂房除工艺设备外,还包括给排水设备、通风除尘设备、三电设备以及相应的管道线路等。由于受空间、结构形式及结构件断面尺寸的限制,各种管道及附属设备的布置需要设计人员花费大量的时间核对柱梁板及相关管道的尺寸信息和它们之间的空间关系。结合自己的设计经验,笔者认为结构三维设计可以在以下三方面促进协同设计。

(1)可视化三维设计

结构三维模型作为BIM综合模型的重要组成部分,可以进行直观的三维浏览并读取构件信息,从而帮助其它非结构专业理解结构图纸。以往图纸会审时都是各专业设计人员拿着各自的图纸进行沟通,相比而言,在一个综合BIM模型下进行讨论沟通效率会更高。

(2)参与网络化的协同设计

三维协同设计一般有两种方案:一种是使用工作集功能。所有的项目人员通过使用工作集,在同一个模型下,一次输入多次利用数据。每个人员只对自己专业负责的内容有读、写的权限,对其它专业参与人员负责的部分只有读的权限。另一种是链接功能。各专业在自己独立的模型中进行设计,但可以随时将其它专业的模型链接进自己的模型来参考(这种功能适合于电脑配置相对较低的情况)。这两种方法要求在设计过程中,各专业设计人员将自己负责部分的模型修改及时进行更新,当其它设计人员每天打开文件并检测更新时就能发现变化,及时沟通。

通过使用上述方法,可以让原来各专业间的线性委托设计变为专业间的网络交互设计,各专业可以同时在一个综合模型中工作,或者在本专业模型中随时链接参考其它专业的模型。这也使得其他专业能在结构和建筑模型上,对工艺设备及管道配合进行优化设计,并在配合设计部门多、工期较紧的情况下控制设计质量。

(3)错漏碰问题的解决

结构bim模型为各专业提供了精准、真实的结构梁柱、墙板、设备基础和支架等信息。在此基础上,工艺设备、管道线路布置确定后,各专业工程师在建模过程中,使用Revit软件自身的“碰撞检查”命令(也可以使用naviswork等更加专业的软件),可以进行碰撞检查并实时调整模型,解决结构与工艺专业间的结构件与设备、管线的硬碰撞;结构件与建筑的门窗、钢梯碰撞;水暖电管线之间的软碰撞;以及复杂厂房楼梯平台的遗漏等问题。

2.协同作业实施方面

三维协同作业技术可实现建筑项目全生命周期的信息构建,增强项目各相关方的信息共享。基于协同设计的模型成果,项目建设方、设计方、施工方、监理方、使用方等都能比较直观地掌握项目的全貌。笔者结合自己在总包现场的施工服务经验,认为结构设计可以在三个方面参与到三维协同作业中发挥作用。

(1)可视化BIM结构模型

利用结构三维模型可视化,总包项目部在未施工前就可以对整体厂房结构布置一目了然。由于现在的工程对施工进度要求越来越高,总包项目部可以利用BIM模型合理形象的制定施工顺序和进度安排。

总包现场施工队伍较多,施工队伍水平又参差不齐,因此可以使用可视化的BIM模型对施工单位进行交底,对厂房的重点和难点部位,还可以进行复杂节点深化设计并提供大样图,协助施工单位制定施工措施。这样可以很大程度避免施工队伍对二维图纸信息理解不到位,而导致竣工结果与设计初衷相违背。

可视化BIM模型特别降低了非专业人士对项目的理解难度,如在进行工艺专业或水暖电专业的设备及管线安装时,施工方都可以看明白结构专业的模型,从而提升了不同专业间、不同参与方的项目协同能力。

(2)工程量统计与安排

总包项目部需要对现场各种工程量进行统计,控制造价。应用信息化模型中自动统计的工程量表格,如土建工程量(混凝土、型钢、钢彩板量等)、建筑门窗明细表等都可用于成本估算、工程量预算及工程量决算,从而帮助总包项目部合理控制工程量。现在更有专业的费控计算软件能够导入revit模型数据,因此结构模型还可以提供给费控专业进行相互校核以减少潜在失误。

(3)厂房局部改造

在工程竣工后的生产过程中,使用方有时会根据生产情况和新工艺要求对某些厂房进行改造,因此也存在一部分大修改造项目。相比新建厂房,改造厂房的设计必须避免与现有结构以及设备冲突,并且尽量不影响生产,因此这些改造项目在设计时往往更加复杂,限制也更多。通过利用保存的BIM结构模型,可以直观的进行观察和提取信息,提高准确性和效率。

结语

以上文章中叙述的三维建模、模型互导和分析计算、以及平法出图都只是在实际工程中运用结构三维设计要求的冰山一角。要想将结构三维设计结合到BIM中,实现文章中提出的优

势,还必须确立三维设计流程和交互原则,完善结构专业的三维族库,定制模板和出图规则等等,这都需要充分的实践和摸索。当前,BIM技术和思想已经开始慢慢在建筑行业中兴起,在工程中以可视化的信息模型为主导,应用于设计、施工的全过程,起到主导设计、精确施工、无缝衔接的作用;将二维的图纸以三维实体的形式展示,丰富图纸表达深度,提高生产效率,节约工程造价就是我们最终的努力目标。

相关推荐