高考数学知识点总结014导数p2

  知识要点

1. 导数(导函数的简称)的定义:设是函数定义域的一点,如果自变量处有增量,则函数值也引起相应的增量;比值称为函数在点之间的平均变化率;如果极限存在,则称函数在点处可导,并把这个极限叫做处的导数,记作,即=.

注:①是增量,我们也称为“改变量”,因为可正,可负,但不为零.

②以知函数定义域为的定义域为,则关系为.

2. 函数在点处连续与点处可导的关系:

⑴函数在点处连续是在点处可导的必要不充分条件.

可以证明,如果在点处可导,那么处连续.事实上,令,则相当于.

于是

⑵如果处连续,那么在点处可导,是不成立的.

例:在点处连续,但在点处不可导,因为,当>0时,;当<0时,,故不存在.

注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.

3. 导数的几何意义:

函数在点处的导数的几何意义就是曲线在点处的切线的斜率,也就是说,曲线在点P处的切线的斜率是,切线方程为

4. 求导数的四则运算法则:

为常数)      

注:①必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.

例如:设,则处均不可导,但它们和

处均可导.

5. 复合函数的求导法则:  复合函数的求导法则可推广到多个中间变量的情形.

6. 函数单调性:⑴函数单调性的判定方法:设函数在某个区间内可导,如果>0,则为增函数;如果<0,则为减函数.

⑵常数的判定方法;如果函数在区间内恒有=0,则为常数.

注:①fx)递增的充分条件,但不是必要条件,如上并不是都有,有一个点例外即x=0时fx) = 0,同样是f(x)递减的充分非必要条件.

②一般地,如果fx在某区间内有限个点处为零,在其余各点均为正(或负),那么fx)在该区间上仍旧是单调增加(或单调减少)的.

7. 极值的判别方法:(极值是在附近所有的点,都有,则是函数的极大值,极小值同理)

当函数在点处连续时,

①如果在附近的左侧>0,右侧<0,那么是极大值;

②如果在附近的左侧<0,右侧>0,那么是极小值.

也就是说是极值点的充分条件是点两侧导数异号,而不是=0. 此外,函数不可导的点也可能是函数的极值点.当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).

注①: 若点是可导函数的极值点,则=0. 但反过来不一定成立. 对于可导函数,其一点是极值点的必要条件是若函数在该点可导,则导数值为零.

例如:函数使=0,但不是极值点.

②例如:函数,在点处不可导,但点是函数的极小值点.

8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.

注:函数的极值点一定有意义.

9. 几种常见的函数导数:

I.为常数)                      

)                   

II.                             

                              

III. 求导的常见方法:

①常用结论:.

②形如两边同取自然对数,可转化求代数和形式.

③无理函数或形如这类函数,如取自然对数之后可变形为,对两边求导可得.

 

第二篇:高考数学知识点总结014导数p2

§14.  知识要点

1. 导数(导函数的简称)的定义:设是函数定义域的一点,如果自变量处有增量,则函数值也引起相应的增量;比值称为函数在点之间的平均变化率;如果极限存在,则称函数在点处可导,并把这个极限叫做处的导数,记作,即=.

注:①是增量,我们也称为“改变量”,因为可正,可负,但不为零.

②以知函数定义域为的定义域为,则关系为.

2. 函数在点处连续与点处可导的关系:

⑴函数在点处连续是在点处可导的必要不充分条件.

可以证明,如果在点处可导,那么处连续.事实上,令,则相当于.

于是

⑵如果处连续,那么在点处可导,是不成立的.

例:在点处连续,但在点处不可导,因为,当>0时,;当<0时,,故不存在.

注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.

3. 导数的几何意义:

函数在点处的导数的几何意义就是曲线在点处的切线的斜率,也就是说,曲线在点P处的切线的斜率是,切线方程为

4. 求导数的四则运算法则:

为常数)      

注:①必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.

例如:设,则处均不可导,但它们和

处均可导.

5. 复合函数的求导法则:  复合函数的求导法则可推广到多个中间变量的情形.

6. 函数单调性:⑴函数单调性的判定方法:设函数在某个区间内可导,如果>0,则为增函数;如果<0,则为减函数.

⑵常数的判定方法;如果函数在区间内恒有=0,则为常数.

注:①fx)递增的充分条件,但不是必要条件,如上并不是都有,有一个点例外即x=0时fx) = 0,同样是f(x)递减的充分非必要条件.

②一般地,如果f(x在某区间内有限个点处为零,在其余各点均为正(或负),那么fx)在该区间上仍旧是单调增加(或单调减少)的.

7. 极值的判别方法:(极值是在附近所有的点,都有,则是函数的极大值,极小值同理)

当函数在点处连续时,

①如果在附近的左侧>0,右侧<0,那么是极大值;

②如果在附近的左侧<0,右侧>0,那么是极小值.

也就是说是极值点的充分条件是点两侧导数异号,而不是=0. 此外,函数不可导的点也可能是函数的极值点.当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).

注①: 若点是可导函数的极值点,则=0. 但反过来不一定成立. 对于可导函数,其一点是极值点的必要条件是若函数在该点可导,则导数值为零.

例如:函数使=0,但不是极值点.

②例如:函数,在点处不可导,但点是函数的极小值点.

8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.

注:函数的极值点一定有意义.

9. 几种常见的函数导数:

I.为常数)                      

)                   

II.                             

                              

III. 求导的常见方法:

①常用结论:.

②形如两边同取自然对数,可转化求代数和形式.

③无理函数或形如这类函数,如取自然对数之后可变形为,对两边求导可得.

相关推荐