经典 通信原理课程总结

通信原理课程报告

邓亚东 中兴091班 学号:6100209139 信息工程学院

一. 课程总结

通信原理这门课,是我们通信类专业一门重要的基础课程,通信原理这门课具有:系统性强、概念抽象、数学含量大。

我们的课程包括模拟通信和数字通信,但主要讨论数字通信。如果模拟信号不需要数字化,那么我们可以进行模拟调制,同样可以发送出去。 实际中的信号是模拟的,我们要把这些信号经过抽样,量化,编码转变成数字信号,再进行传输。具体的处理过程是:先用滤波等处理,得到带限的信号,经过采样保持电路,我们就得到PAM信号。离散信号经过量化归属到个档次的幅度中,这就是量化。之后将量化了的信号进行编码

,编码是一种认为规定的过程比如我们规定1V用00表示,2V用01表示,3V用10表示,而4V用11来表示,这样就把阶梯信号和二进制信号有了一种对应关系,顺着这种对应关系,我们可以得到刚才量化了的信号的二进制代码。把这个过程抽样出来就是:模拟信号经过抽样就是把时间连续、幅值连续的模拟信号变成时间离散,幅值连续的脉冲信号,量化就是把时间离散,幅值连续的脉冲信号变成时间离散,幅值也离散的多电平信号,最后是编码,这就是用一组数字序列来表示上述多电平信号。

PCM编码得到了可以在存储器中存储的数字信号。为了达到通信目的,我们就要将数字信号传递并且转换成模拟信号,因为模拟信号才是我们可以识别的。所以我们从存储器中读取数字信号,这些信号是基带信号,不容易传输。

这即为离散信号

当然这其中还涉及到数字信号的码型设计、功率谱分析、无码间串扰和扰码解码等有利于信号传输的方法。这就是我们本课程第六章节数字信号的基带传输部分。经过数字调制系统就可以转换成高频信号而被发送设备以各种形式比如微波,光信号传播出去。接收设备将这些信号转换成电信号,通过解调器,就可以还原基带信号,同样可以将它们放进存储器存储。缓存中的信号通过解码器,也就是与编码器功能相反的器件将数字序列转换成各种量化的台阶信号。最后将台阶信号进行填充恢复,我们就又可以原来的输入的模拟波形了。由此我们完成一次通信。这就是我们本课程第七八章节数字信号的调制。

如果在传输过程中再应用第九章中关于差错控制编码技术的进行进一步优化,就可以形成一个更加实用的系统了。

作为通信工程专业的一门重要专业基础课,通信原理中也有很多容易混淆的概念。给我印象最深的就是调制信号、载波信号、已调信号、基带信号和频带信号。起初总把调制信号与载波信号的概念相互矛盾,总是把载波信号当做调制信号。现在对这几个信号的概念已经很清楚了。基带信号(调制信号)、载波信号和频带信号(已调信号),基带信号与载波信号经过调制后形成已调的频带信号。

还有一个让我印象深刻知识点就是复用技术,开始觉得很多复用技术很乱,但当明白它们的概念之后就觉得其实还是很有意思的,而且也觉得这些技术的发明者很让人佩服。常用的复用技术有FDM、TDM、WDM和CDMA,它们分别是频分多路复用、时分多路复用、波分多路复用和码分多路复用的简称。

频分多路复用的基本原理是在一条通信线路上设置多个信道,每路信

道的信号以不同的载波频率进行调制,各路信道的载波频率互不重叠,这样一条通信线路就可以同时传输多路信号。

时分多路复用是以信道传输时间作为分割对象,通过多个信道分配互不重叠的时间片的方法来实现,因此时分多路复用更适用于数字信号的传输。它又分为同步时分多路复用和统计时分多路复用。

波分多路复用是光的频分多路复用,它是在光学系统中利用衍射光栅来实现多路不同频率光波信号的合成与分解。

码分多路复用也是一种共享信道的方法,每个用户可在同一时间使用

同样的频带进行通信,但使用的是基于码型的分割信道的方法,即每个用户分配一个地址码,各个码型互不重又叠,通信各方之间不会相互干扰,且抗干拢能力强.码分多路复用技术主要用于无线通信系统,特别是移动通信系统.它不仅可以提高通信的话音质量和数据传输的可靠性以及减少干扰对通信的影响,而且增大了通信系统的容量.笔记本电脑或PDA 以及掌上电脑等移动性计算机的联网通信就是使用了这种技术。

《通信原理》课有极强的理论性,表现为有大量、严密的数学推导和公式,而且分析推导的方法往往从时域和频域同时展开,要求我们从时域和频域的不同侧面全面、准确、方便地理解信号,掌握系统处理的特点和结果。这些充分体现了它作为基础课的特点。因此,它也是我们通信工程专业必须牢牢掌握的一门课。虽然这门课学得不是很好,但也对课程中的一些基本知识有了大概的了解,对通信系统的模型也有了一些模糊的认识,也体会到了本课程对我们专业的学生之后进一步学习的重要性。

二. 课外阅读总结

扩频通信系统原理[Spread Spectrum Communication]:

扩频通信,是扩展频谱通信的简称. 扩频通信的定义简述为:扩频通信技术是一种信息传输方式,在发送端采用扩频码调制,使信号所占的频带宽度大于所传信息必需的带宽,在接收端采用同样的扩频码进行解扩以恢复所传原始信息数据。 扩频码序列:指的是很窄的脉冲码序列. 需要说明的是:扩频技术所采用的扩频码序列与所传信息数据时无关的,也就是说它与一般的正弦载波信号是类似的,丝毫不影响信息传输的透明性。扩频码序列仅仅起扩展信号频谱的作用。 扩频通信的理论基础: C=B*log2(1+S/N) (bit/s)

该式称为香农公式。C为信道容量,单位为bps,B是信道带宽(Hz),S是信号功率(W),N是噪声功率(W)。

香农定理指出,如果信息源的信息速率R小于或者等于信道容量C,那么,在理论上存在一种方法可使信息源的输出能够以任意小的差错概率通过信道传输 由香农定理可以得出结论:

1、若减小带宽,就必须要发送较大的信号功率(即较大的信噪比);

2、若有较大传输带宽,则可以传输有较小信噪比的信号。甚至在信号被噪声淹没的情况下,S/N <1,只要相应的增加信号带宽,就可以进行可靠地通信。

因此,采用扩频信号进行通信的优越性就在于用扩展频谱的方法换取较低的信噪比。

扩频通信系统与普通的数字通信系统相较,就是多了扩频调制和解扩部分。 正如在一般的窄带通信中,已调信号在接收端都要进行解调来恢复发送端所传的信息。在扩频通信中,接收端则要用与发送端完全相同的扩频码序列与收到的扩频信号进行相关解扩,以恢复所传输的原始信号

? 扩频通信的基本特征就是扩展频谱,具体做法是使用比发送的信息数据速

率高许多倍的伪随机码把载有信息数据的基带信号的频谱进行扩展,形成宽带的低功率谱密度的信号来通信。

? 发射端,在天线之前某处链路注入扩频码,这个过程称为扩频处理,经扩

频处理后原数据信息能量被扩散到一个很宽的频带内;

?

接收端,相应链路中移去扩频码,恢复数据,此过程称为解扩。显然,收

发两端需要预先知道扩频码。

扩频技术的精确定义是:通过注入一个更高频率的信号将基带信号扩展到一个更宽的频带内的射频通信系统,即发射信号的能量被扩展到一个更宽的频带内使其看起来如同噪声一样。扩展带宽与初始信号之比称为扩频处理增益(dB),典型值可以从10dB到60dB

? 扩频类型: 按照扩频的方式不同,目前的扩频通信系统可以分为直接序列

扩频(DSSS) 、跳频扩频技术(FHSS)、跳时(TH)、脉冲调制、混合扩频。

 

第二篇:通信原理课程总结

通信原理课程综述

08通信2班 王树伟 0805070109 《通信原理》课程是通信、信息及电子类专业一门重要的基础课程,其特点是系统性强、概念抽象、数学含量大。通信原理这门课,一开始就觉得很难,因为书本上一大堆数学推导公式看着就心慌,因为自己数学功底不太好,所以对那些傅里叶变换和拉普拉斯变换总有着很强的畏惧心理。虽然课程已经基本结束了,但说实话自己的上面的很多知识也还不是很清楚,尤其是在数字信号的调制和传输方面,其中涉及了很多的数学推理过程。

我们的课程包括模拟通信和数字通信,但主要讨论数字通信。如果模拟信号不需要数字化,那么我们可以进行模拟调制,同样可以发送出去,这个过程要简单很多。

实际中的信号总是模拟的,我们把这些信号通过滤波等处理,得到带限的信号,经过采样保持电路,我们就得到PAM信号。离散信号经过量化归属到个档次的幅度中比如我们有2V,4V,6,V,8V四个档次的归类,并且规定1V~3V之间的PAM离散信号就归类到2V的档次中去,一次类推,通过比较给每个PAM信号进行归类,这就是量化。之后将量化了的信号进行编码,编码是一种认为规定的过程比如我们规定2V用00表示,4V用01表示,6V用10表示,而8V用11来表示,这样就把阶梯信号和二进制信号有了一种对应关系,顺着这种对应关系,我们可以得到刚才量化了的信号的二进制代码,这就是PCM编码得到了可以在存储器中存储的数字信号。这就是我们本课程第五章节模拟信号的波形编码中的脉冲编码调制PCM。

为了达到通信目的,我们就要将数字信号传递并且转换成模拟信号,因为模拟信号才是我们可以识别的。所以我们从存储器中读取数字信号,这些信号是基带信号,不容易传输。当然这其中还涉及到数字信号的码型设计、功率谱分析、无码间串扰和扰码解码等有利于信号传输的方法。这就是我们本课程第六章节数字信号的基带传输部分。

经过数字调制系统就可以转换成高频信号而被发送设备以各种形式比如微波,光信号传播出去。接收设备将这些信号转换成电信号,通过解调器,就可以还原基带信号,同样可以将它们放进存储器存储。缓存中的信号通过解码器,也就是与编码器功能相反的器件将数字序列转换成各种量化的台阶信号。最后将台阶信号进行填充恢复,我们就又可以原来的输入的模拟波形了。由此我们完成一次通信。这就是我们本课程第七八章节数字信号的调制。

如果在传输过程中再应用第九章中关于差错控制编码技术的进行进一步优化,就可以形成一个更加实用的系统了。

作为通信工程专业的一门重要专业基础课,通信原理中也有很多容易混淆的概念。给我印象最深的就是调制信号、载波信号、已调信号、基带信号和频带信号。起初总把调制信号与载波信号的概念相互矛盾,总是把载波信号当做调制信

号,而且还深信不疑,后来老师用减数与被减数的关系引导我们才终于茅塞顿开。当然现在对这几个信号的概念已经很清楚了。基带信号(调制信号)、载波信号和频带信号(已调信号),基带信号与载波信号经过调制后形成已调的频带信号。

另一个让我有疑惑也是很感兴趣的就是复用技术,开始觉得很多复用技术很乱,但当明白它们的概念之后就觉得其实还是很有意思的,而且也觉得这些技术的发明者很让人佩服。常用的复用技术有FDM、TDM、WDM和CDMA,它们分别是频分多路复用、时分多路复用、波分多路复用和码分多路复用的简称。

频分多路复用的基本原理是在一条通信线路上设置多个信道,每路信道的信号以不同的载波频率进行调制,各路信道的载波频率互不重叠,这样一条通信线路就可以同时传输多路信号。

时分多路复用是以信道传输时间作为分割对象,通过多个信道分配互不重叠的时间片的方法来实现,因此时分多路复用更适用于数字信号的传输。它又分为同步时分多路复用和统计时分多路复用。

波分多路复用是光的频分多路复用,它是在光学系统中利用衍射光栅来实现多路不同频率光波信号的合成与分解。

码分多路复用也是一种共享信道的方法,每个用户可在同一时间使用同样的频带进行通信,但使用的是基于码型的分割信道的方法,即每个用户分配一个地址码,各个码型互不重又叠,通信各方之间不会相互干扰,且抗干拢能力强.码分多路复用技术主要用于无线通信系统,特别是移动通信系统.它不仅可以提高通信的话音质量和数据传输的可靠性以及减少干扰对通信的影响,而且增大了通信系统的容量.笔记本电脑或PDA 以及掌上电脑等移动性计算机的联网通信就是使用了这种技术。

《通信原理》课有极强的理论性,表现为有大量、严密的数学推导和公式,而且分析推导的方法往往从时域和频域同时展开,要求我们从时域和频域的不同侧面全面、准确、方便地理解信号,掌握系统处理的特点和结果。这些充分体现了它作为基础课的特点。因此,它也是我们通信工程专业必须牢牢掌握的一门课。虽然这门课学得不是很好,但也对课程中的一些基本知识有了大概的了解,对通信系统的模型也有了一些模糊的认识,也体会到了本课程对我们专业的学生之后进一步学习的重要性。

相关推荐