湖北民族学院近代物理实验(1.光栅光谱仪)实验报告

湖北民族学院理学院实验报告

姓名:程旺        学号:021240109        实验日期:20##年5月5日

课程名称:近代物理实验

实验题目:光栅光谱仪实验

  实验目的

1、了解光栅光谱仪的工作原理

2、掌握利用光栅光谱仪进行测量的技术

  实验仪器

WDS系列多功能光栅光谱仪,计算机

  实验原理

光谱仪是指利用折射或衍射产生色散的一类光谱测量仪器。光栅光谱仪是光谱测量中最常用的仪器,基本结构如图1所示。它由入射狭缝S1、准直球面反射镜M1、光栅G、聚焦球面反射镜M2以及输出狭缝S2构成。

衍射光栅是光栅光谱仪的核心色散器件。它是在一块平整的玻璃或金属材料表面(可以是平面或凹面)刻画出一系列平行、等距的刻线,然后在整个表面镀上高反射的金属膜或介质膜,就构成一块反射试验射光栅。相邻刻线的间距d称为光栅常数,通常刻线密度为每毫米数百至数十万条,刻线方向与光谱仪狭缝平行。入射光经光栅衍射后,相邻刻线产生的光程差为入射角,为衍射角,则可导出光栅方程:

    

光栅方程将某波长的衍射角和入射角通过光栅常数d联系起来,为入射光波长,m为衍射级次,取等整数。式中的“”号选取规则为:入射角和衍射角在光栅法线的同侧时取正号,在法线两侧时取负号。如果入射光为正入射,光栅方程变为。衍射角度随波长的变化关系,称为光栅的角色散特性,当入射角给定时,可以由光栅方程导出

  ,    

复色入射光进入狭缝S1后,经M2变成复色平行光照射到光栅G上,经光栅色散后,形成不同波长的平行光束并以不同的衍射角度出射,M2将照射到它上面的某一波长的光聚焦在出射狭缝S2上,再由S2后面的电光探测器记录该波长的光强度。光栅G安装在一个转台上,当光栅旋转时,就将不同波长的光信号依次聚焦到出射狭缝上,光电探测器记录不同光栅旋转角度(不同的角度代表不同的波长)时的输出光信号强度,即记录了光谱。这种光谱仪通过输出狭缝选择特定的波长进行记录,称为光栅单色仪。

在使用单色仪时,对波长进行扫描是通过旋转光栅来实现的。通过光栅方程可以给出出射波长和光栅角度之间的关系(如图2所示)

,    

其中,为光栅的旋转角度,为入射角和衍射角之和的一半,对给定的单色仪来说为一常数。

光谱仪是指利用折射或衍射产生色散的一类光谱测量仪器。光栅光谱仪是光谱测量中最常用的仪器,基本结构如图1所示。它由入射狭缝S1、准直球面反射镜M1、光栅G、聚焦球面反射镜M2以及输出狭缝S2构成。

  实验内容和步骤:

1  开机之前,认真检查光栅光谱仪的各个部分(单色仪主机、电控箱、接受单元、计算机、)连线是否正确,保证准确无误。在仪器系统复位完毕后,根据测试和实验的要求分别调节入射狭缝宽度、出射狭缝宽度到合适的宽度。

2  狭缝调节

仪器的入射狭缝和出射狭缝均为直狭缝,宽度范围0~2mm连续可调。每旋转一周狭缝宽度变化0.5mm,最大调节宽度为2mm。

3  电控箱的使用

电控箱包括电源、信号放大、控制系统和光源系统。在运行仪器操作软件前已确认所有的连接线正确连接且已经打开电控箱的开关。

4  程序安装(已安装好,跳过)

5  采用标准光谱灯进行波长校准

光栅光谱仪由于运输过程中震动等各种原因,可能会使波长准确度产生偏差,因此在第一次使用前用已知的光谱线来校准仪器的波长准确度。

5.1 用钠灯谱线校准

利用钠灯的两根谱线的波长值(标准值为589.0nm和589.6nm)来进行校准仪器。根据能量信号大小手工调节入射狭缝和出射狭缝,扫描钠灯光谱。(见下图)

5.2 用汞灯谱线校准

利用汞灯的五根谱线的波长值(标准值为404.7nm、435.8nm、546.1nm、577.0nm、579.0nm)来进行校准仪器。根据能量信号大小手工调节入射狭缝和出射狭缝,扫描汞灯光谱。(见下图)

6  分别扫描不同光源的光谱

调节白炽灯光源,使其在单色义的波长范围内有最大的输出。根据测量对系统参数进行相应的设置。分别测出无滤光片、加装黄色、蓝色、透明滤光片的光谱图。(见下图)

  思考与问题

1拍摄比较光谱的操作原则怎样?

 答:拍摄互相比较的两列光谱时,不能移动胶板,也不能转动色散元件,仅在换光源后换用狭缝的相邻部位摄谱。

 

第二篇:光栅光谱仪实验报告 2

      

一、实验目的

1.用光栅光谱仪测量白、黄滤光玻璃片的基线、吸光度、与透过率。

2.学会并掌握光栅光谱仪的应用。

二、实验仪器

1.已装载软件的电脑 2. 有白、黄滤光镜片的滤光片 3.光栅光谱仪

 

三、实验原理

   仪器的规格与主要技术指标:

波长范围      200-800nm

焦距          302.5mm

相对孔径      D/F=1/7

波长精度      ±0.4nm

波长重复性    ±0.2nm

杂散光        ≤10-3

WGD-3 型组合式多功能光栅光谱仪,由光栅单色仪,接收单元,扫描系统,电子放大器,A/D采集单元,计算机组成。该设备集光学、精密机械、电子学、计算机技术于一体。光学系统采用C-T型,如图2-1

图2-1  光学原理图

M1反射镜、M2准光镜、M3物镜、M4转镜、G平面衍射光栅

S1入射狭缝、S2光电倍增管接收、S3 CCD接收

入射狭缝、出射狭缝均为直狭缝,宽度范围0-2.5mm连续可调,光源发出的光束进入入射狭缝S1,S1位于反射式准光镜M2的焦面上,通过S1射入的光束经M2反射成平行光束投向平面光栅G上,衍射后的平行光束 经物镜M3成象在S2上或S3上。

M2、M3                焦距302.5mm

光栅G                 每毫米刻线1200条  闪耀波长550nm

二块滤光片工作区间    白片  320-500nm

                      黄片  500-800nm

四、实验内容

1.进入系统后,首先弹出如图的友好界面。

2.单击鼠标或键盘上的任意键或等待5秒钟后,马上显示工作界面,同时弹出一个对话框(如图),让用户确认当前的波长位置是否有效、是否重新初始化。如果选择确定,则确认当前的波长位置,不再初始化;如果选择取消,则初始化,波长位置回到200nm处。此时,选择确定即可。

 3.基线的测量,将信息/视图一栏选为动态方式,左侧的工作模式选为基线,间隔设定为0.1或0.2纳米,安好玻璃片后开始单程扫描,不断调节电压表,使图像的在450-550nm时达到顶峰,然后返回,重新初始化,重新扫描即可,将所得图像与数据保存在寄存器1中。

4.将工作模式选为吸光度和透过率后,分别按上述方法测量。将所得图像与数据保存在寄存器2、3中。

五、图像采集

 1.基线

A.白玻璃

2.白玻璃透过率

    

3.白玻璃吸光度

B.黄玻璃

1.黄玻璃基线

2.黄玻璃透过率

3.黄玻璃吸光度

六、注意事项

1.当标准峰波长偏长时,输入的修正值为负值,反之为正值。

2.总修正值不得超过±50nm。

3.仪器掉电或先启动软件再给仪器加电均可能造成波长混乱。此时应关闭软件,在保证连线准确、仪器加电的情况下,对仪器重新进行初始化。

4.“起点”必须小于“终点”,“最小值”必须小于“最大值”

七、实验总结

    试验中进行多次测量,了解到了影响实验课结果的各种因素,并进行总结,基本掌握了光栅光谱仪的基本操作方法,能正确使用仪器能够较为正确的测量基线、吸光度、透过率等物理量。

相关推荐