棱镜色散实验报告6

实验报告

一、实验题目:

棱镜色散关系的研究

二、         实验目的

1、  进一步练习使用分光计,并用最小偏向角法测量棱镜的折射率;

2、  研究棱镜的折射率与入射光波长的关系。

三、实验仪器

分光计、双面镜、三棱镜、汞灯。

四、实验原理(原理图、公式推导和文字说明)

1、  棱镜色散原理

棱镜的色散是由于不同波长的光在棱镜介质中传播速度不同,从而折射率不同而引起的。在介质无吸收的光谱区域内,色散关系的函数形式早在1863年由科希(Cauchy)得出,该关系式为

                                

式中A和B是与棱镜材料有关的常数,也叫色散常数。

3、  测棱镜的最小偏向角

(1)       确定出射光线方位

          用汞灯照亮平行光管狭缝,将载物台与游标盘固定在一起,望远镜与刻度盘固定在一起。转动游标盘,使棱镜处于如图所示的位置,先用眼睛沿着棱镜出射光的方向寻找棱镜折射后的狭缝像,找到后再将望远镜移至眼睛所在的位置,此时可在望远镜观察到汞灯经棱镜AB和AC面折射后形成的光谱。将望远镜对准其中的某一条谱线(如绿色谱线λ=546.1 nm),慢慢转动游标盘,以改变入射角,使绿色谱线往偏向角减小的方向移动,同时转动望远镜跟踪谱线,直到载物台继续沿着原方向转动时,绿色谱线不再向前移动反而向相反方向移动(偏向角反而增大)为止。这条谱线移动的反向转折位置就是棱镜对该谱线的最小偏向角的位置。然后将望远镜的叉丝竖线大致对准绿色谱线,固定望远镜,微调游标盘,找出绿色谱线反向转折的确切位置。再固定游标盘,转动望远镜,使其叉丝竖线与绿色谱线中心对准,记下两游标的读数。

(2) 确定入射光线方位

取下棱镜,使游标盘固定,转动望远镜直接对准平行光管,使叉丝竖线对准狭缝中心,记下此时两游标的读数。为了消除分光计刻度盘的偏心误差,测量每个角度时,在刻度盘的两个游标Ⅰ,Ⅱ上都要读数,然后取平均值。

每组波长的折射率为

棱镜的色散关系                  

五、实验数据处理(整理表格、计算过程、结论)

棱镜顶角α=60°

根据上表作出n1/λ2的关系曲线。

由最小二乘法确定棱镜介质的色散常数A、B

因此棱镜的色散关系为:

六、总结及可能性应用

    通过本实验,进一步熟悉分光计的调整和使用,同时学习了采用最小偏向角法测量折射率的原理及色散原理,建立了棱镜的色散关系。棱镜是一种重要的分光元件,可用于发光物质光谱的观测。

 

第二篇:用双棱镜干涉测光波波长的实验报告

用双棱镜干涉测光波波长的实验报告

【实验目的】 

1.掌握用双棱镜获得双光束干涉的方法,加深对干涉条件的理解.

2.学会用双棱镜测定钠光的波长.

   

【实验仪器】

光具座,单色光源(钠灯),可调狭缝,双棱镜,辅助透镜(两片),测微目镜,白屏.

【实验原理】

如果两列频率相同的光波沿着几乎相同的方向传播,并且它们的位相差不随时间而变化,那么在两列光波相交的区域,光强分布是不均匀的,而是在某些地方表现为加强,在另一些地方表现为减弱(甚至可能为零),这种现象称为光的干涉.

菲涅耳利用图1所示的装置,获得了双光束的干涉现象.图中AB是双棱镜,它的外形结构如图2所示,将一块平玻璃板的一个表面加工成两楔形板,端面与棱脊垂直,楔角A较小(一般小于10).从单色光源发出的光经透镜L会聚于狭缝S,使S成为具有较大亮度的线状光源.从狭缝S发出的光,经双棱镜折射后,其波前被分割成两部分,形成两束光,就好像它们是由虚光源S1和S2发出的一样,满足相干光源条件,因此在两束光的交叠.区域P1P2内产生干涉.当观察屏P离双棱镜足够远时,在屏上可观察到平行于狭缝S的、明暗相间的、等间距干涉条纹.

                       图1                            图2

设两虚光源S1和S2之间的距离为,虚光源所在的平面(近似地在光源狭缝S的平面内)到观察屏P的距离为,且,干涉条纹间距为,则实验所用光源的波长

                                      

因此,只要测出,就可用公式计算出光波波长.

【实验内容】

1.调节共轴

(1)按图1所示次序,将单色光源M,会聚透镜L,狭缝S,双棱镜AB与测微目镜P放置在光具座上.用目视法粗略地调节它们中心等高、共轴,棱脊和狭缝S的取向大体平行.

(2)点亮光源M,通过透镜L照亮狭缝S,用手执白纸屏在双棱镜后面检查:经双棱镜折射后的光束,有否叠加区P1P2 (应更亮些)?叠加区能否进入测微目镜?当移动白屏时,叠加区是否逐渐向左、右(或上、下)偏移?

根据观测到的现象,作出判断,进行必要的调节使之共轴.

2.调节干涉条纹

(1)减小狭缝S的宽度,绕系统的光轴缓慢地向左或右旋转双棱镜AB,当双棱镜的棱脊与狭缝的取向严格平行时,从测微目镜中可观察到清晰的干涉条纹.

(2)在看到清晰的干涉条纹后,为便于测量,将双棱镜或测微目镜前后移动,使干涉条纹的宽度适当.同时只要不影响条纹的清晰度,可适当增加狭缝S的缝宽,以保持干涉条纹有足够的亮度.(注:双棱镜和狭缝的距离不宜过小,因为减小它们的距离,S1、S2间距也将减小,这对的测量不利.)

3.测量与计算

(1)用测微目镜测量干涉条纹的间距.为了提高测量精度,可测出n条(10~20条) 干涉条纹的间距x,除以n,即得.测量时,先使目镜叉丝对准某亮纹(或暗纹)的中心,然后旋转测微螺旋,使叉丝移过n个条纹,读出两次读数.重复测量几次,求出

(2)用光具座支架中心间距测量狭缝至观察屏的距离.由于狭缝平面与其支架中心不重合,且测微目镜的分划板(叉丝)平面也与其支架中心不重合,所以必须进行修正,以免导致测量结果的系统误差.测量几次,求出

(3)用透镜两次成像法测两虚光源的间距.参见图3,保持狭缝S与双棱镜AB的位置不变,即与测量干涉条纹间距时的相同(问:为什么不许动?),在双棱镜与测微目镜之间放置一已知焦距为的会聚透镜,移动测微目镜使它到狭缝S的距离,然后维持恒定.沿光具座前后移动透镜,就可以在的两个不同位置上从测微目镜中看到两虚光源S1和S2经透镜所成的实像,其中一组为放大的实像,另一组为缩小的实像.分别测得两放大像的间距和两缩小像的间距,则按下式即可求得两虚光源的间距.多测几次,取平均值

                                

                                 图3

(4)用所测得的值,代入式(7-1),求出光源的波长

(5)计算波长测量值的标准不确定度.

注意事项

(1)使用测微目镜时,首先要确定测微目镜读数装置的分格精度,要注意防止回程差,旋转读数鼓轮时动作要平稳、缓慢,测量装置要保持稳定.

(2)在测量值时,因为狭缝平面和测微目镜的分划板平面均不和光具座滑块的读数准线(支架中心)共面,必须引人相应的修正(例如,GP一78型光具座,狭缝平面位置的修正量为42.5mm,MCU一15型测微目镜分划板平面的修正量为27.0mm),否则将引起较大的系统误差.

(3)测量d1、d2时,由于透镜像差的影响,将引入较大误差,可在透镜上加一直径约lcm的圆孔光阑(用黑纸)以增加d1、d2测量的精确度.(可对比一下加或不加光阑的测量结果.)

   

思考

1.双棱镜和光源之间为什么要放一狭缝?为何缝要很窄且严格平行于双棱镜脊才可以得到清晰的干涉条纹?

2.试证明公式

相关推荐