生物化学重点总结 (2)

第一章 蛋白质的结构与功能 一、名词解释

肽键 :一个氨基酸的a--羧基与另一个氨基酸的a--氨基脱水缩合所形成的结合键,称为肽键。 等电点:蛋白质分子净电荷为零时溶液的pH值称为该蛋白质的等电点。

蛋白质的一级结构:是指多肽链中氨基酸的排列顺序。 DNA的一级结构:核酸分子中核苷酸从5’-末端到3’-末端的排列顺序即碱基排列顺序称为核酸的一级结构。

DNA双螺旋结构:两条反向平行DNA链通过碱基互补配对的原则所形成的右手双螺旋结构称为DNA的二级机构。 酶:由活细胞合成的、对底物具有高效催化作用的特殊蛋白质。 酶原:无活性的酶的前身物质称为酶原 酶原激活:酶原受某种因素作用后,转变成具有活性的酶的过程

Km值:是酶促反应速度为最大反应速度一半时的底物浓度,是酶的特征性常数。 竞争性抑制作用:抑制剂与酶的正常底物结构相似,抑制剂与底物分子竞争地结合酶的活性中心,从而阻碍酶与底物结合形成中间产物,这种抑制作用称为竞争性抑制作用 非竞争性抑制作用:抑制剂与酶活性中心外的其他位点可逆的结合,使酶的空间结构改变,使酶催化活性降低,此种结合不影响酶与底物分子的结合,同时酶与底物的结合也不影响酶与抑制剂的结合。底物与抑制剂之间没有竞争关系,这种抑制作用称为非竞争性抑制作用

1,糖酵解:在不需要氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程称为糖酵解 4,三羧酸循环(TAC):乙酰辅酶A与草酰乙酸缩合生成柠檬酸,历经4次脱氢及2次脱羧反应,又生成草酰乙酸,此过程是由含有三个羧基的柠檬酸作为起始物的循环反应,故称为三羧酸循环

7,糖异生:由非糖物质转变为葡萄糖或糖原的过程称为糖异生

9,血糖:血液中的葡萄糖称为血糖。其正常水平为3.89~6.11 mmol/L

1,必需脂肪酸:亚油酸、亚麻酸、花生四烯酸等维持机体生命活动所必需,但体内不能合成,必须由食物提供的脂肪酸,称为必需脂肪酸

2,脂肪动员:储存在脂肪细胞中的脂肪,经脂肪酶逐步水解为甘油和脂肪酸,并释放入血供全身各组织氧化利用的过程称为脂肪动员

3,脂肪酸β-氧化:脂肪酸的β-氧化是从脂酰基的β-原子开始,进行脱氢、加水、再脱氢及硫解四步连续的反应,将脂酰基断裂生成一分子乙酰CoA和比原来少两个碳原子的脂酰CoA的过程。 4,酮体:酮体包括乙酰乙酸、β-羟丁酸和丙酮,是脂肪酸在肝内分解产生的特有正常中间产物。

1,生物氧化:营养物质在体内氧化分解为CO2和H2O,并逐步释放能量的过程成为生物氧化 5,呼吸链:位于线粒体内膜上

起生物氧化作用的一系列递

氢体或递电子体,它们按一定的顺序排列在内膜上,与细胞摄取氧的呼吸过程有关,故称呼吸链

2.联合脱氨基作用:由转氨酶催化的转氨基作用和L-谷氨酸脱氢酶催化的谷氨酸氧化脱氨基作用联合进行。

9.必需氨基酸:体内不能合成必需由食物提供的氨基酸。 简答题

2.半保留复制:半保留复制指DNA复制过程,双螺旋解开成单链各自作为模板合成与其互补的子链,从一个亲代DNA双螺旋复制出两个与亲代完全相同的子代DNA,子代DNA中的一条DNA链来自亲代,另一条链是新合成的复制方式。 5.冈崎片段:指复制中随从链上合成的不连续DNA片段。 1,转录:以DNA一条单链为模板,四种NTP为原料,在DNA指导的RNA聚合酶作用下,按照碱基互补原则合成RNA链的过程,称为转录。 4,模板链:转录时,结构基因的DNA双链中仅一条链为转录的模板,另一条链无转录功能,故前者叫做转录的模板链。

5,编码链:转录时,结构基因的DNA双链中有一条链不作为转录的模板,无转录功能。因该DNA链的走行方向和碱基排列顺序与转录生成的RNA链基本相同,只是前者碱基中的T在后者为U而已,故称其为编码连。 15,外显子:在断裂基因及其初级转录产物上出现,并表达为成熟RNA 的核酸序列。 16,内显子:隔断基因的线性表达而在剪接过程中被除去的核酸序列。

1,翻译:是细胞内以mRNA为模板,按照mRNA分子中由核苷酸组成的密码信息合成蛋白质的过程。

5,遗传密码或三联密码:mRNA 分子中每三个相邻的核苷酸组成一组,形成三联体,在蛋白质生物合成时,代表一种氨基酸信息,称为遗传密码或密码子

13,进位或注册:根据mRNA 下一组遗传密码指导,使相应氨基酰-tRNA进入并结合到核糖体A位的过程称为进位。 1.解链温度TM:双链DNA或RNA分子丧失半数双螺旋结构时的温度,符号:Tm。每种DNA或RNA分子都有其特征性的Tm值,由其自身碱基组成所决定,G+C含量越多,Tm值越高。

2.米氏常数(Km 值):用Km 值表示,是酶的一个重要参数。Km 值是酶反应速度(V)达到最大反应速度(Vmax)一半时底物的浓度(单位M 或mM)。米氏常数是酶的特征常数,只与酶的性质有关,不受底物浓度和酶浓度的影响

3辅酶:是指与脱辅酶结合比较松的小分子有机物,可以用透析法除去,例如辅酶Ⅰ和辅酶Ⅱ。辅基是指以共价键和脱辅酶结合,不能用透析法除去的辅助因子,例如丙酮酸氧化酶中的黄素腺嘌呤二核苷酸。 4电子传递体系水平磷酸化:生物氧化过程中产生的电子或氢经电子传递链传递给氧时可生成很多能量,这一过程可与磷酸化偶联从而将一部

分能量转移给ADP生成ATP,这种ATP的生成机制称为电子传递体系水平磷酸化。 4底物水平磷酸化:在底物被氧化的过程中,底物分子内部能量重新分布产生高能磷酸键(或高能硫酯键),由此高能键提供能量使ADP(或GDP)磷酸化生成ATP(或GTP)的过程称为底物水平磷酸化。

6.冈崎片段:一组短的DNA 片段,是在DNA 复制的起始阶段产生的,随后又被连接酶连接形成较长的片段。在大肠杆菌生长期间,将细胞短时间地暴露在氚标记的胸腺嘧啶中,就可证明冈崎片段的存在。冈崎片段的发现为DNA 复制的科恩伯格机理提供了依据。

8同工酶是指催化相同的化学反应,但其蛋白质分子结构、理化性质和免疫性能的方面都存在明显差异的一组酶。 10磷氧比:氧化磷酸化过程中某一代谢过程消耗无机磷酸和氧的比值。 NADH电子传递链的P/O比值为3,FADH2电子传递链的P/O比值是2 11糖酵解:生物细胞在无氧条件下,将葡萄糖或糖原经过一系列反应转变为乳酸,并产生少量ATP的过程。 12密码的简并性:同一种氨基酸有两个或者更多密码子的现象

13维生素:是生物体内维持正常生理功能所必须的一类微量天然有机物。

36.FAD是黄素腺嘌呤二核苷酸的简称。

1.遗传密码 :mRNA分子上从5'→3'方向,由起始密码子AUG开始,每3个核苷酸组成的三联体,决定肽链上某一个氨基酸或蛋白质合成的起始、终止信号,称为三联体密码,也叫密码子。 2.别构酶:又称为变构酶,是一类重要的调节酶。其分子除了与底物结合、催化底物反应的活性中心外,还有与调节物结合、调节反应速度的别构中心。通过别构剂结合于别构中心影响酶分子本身构象变化来改变酶的活性。 3.酮体:在肝脏中,脂肪酸不完全氧化生成的中间产物乙酰乙酸、β-羟基丁酸及丙酮统称为酮体。在饥饿时酮体是包括脑在内的许多组织的燃料,酮体过多会导致中毒。 4. EMP途径:又称糖酵解途径。指葡萄糖在无氧条件下经过一定反应历程被分解为丙酮酸并产生少量ATP和

NADH+H+的过程。是绝大多数生物所共有的一条主流代谢途径。

5.糖的有氧氧化:葡萄糖或糖原在有氧条件下,经历糖酵解途径、丙酮酸脱氢脱羧和TCA循环彻底氧化,生成C02和水,并产生大量能量的过程。 6.三羧酸循环:又称柠檬酸循环、TCA循环,是糖有氧氧化的第三个阶段,由乙酰辅酶A和草酰乙酸缩合生成柠檬酸开始,经历四次氧化及其他中间过程,最终又生成一分子草酰乙酸,如此往复循环,每一循环消耗一个乙酰基,生成CO2和水及大量能量。 7.糖异生:由非糖物质转变为葡萄糖或糖原的过程。糖异生作用的途径基本上是糖无氧分解的逆过程---除了跨越三个能障(丙酮酸转变为磷酸烯醇式丙酮酸、1,6-磷酸果糖转变为6-磷酸果糖,6-磷酸果糖转变为葡萄糖)需用不同的酶及能量之外,其他反应过程完全是糖酵解途径逆过程。 8.乳酸循环:指糖无氧条件下在骨骼肌中被利用产生乳酸及乳酸在肝中再生为糖而又可以为肌肉所用的循环过程。剧烈运动后,骨骼肌中的糖经无氧分解产生大量的乳酸,乳酸可通过细胞膜弥散入血,通过血液循环运至肝脏,经糖异生作用再转变为葡萄糖,葡萄糖经血液循环又可被运送到肌肉组织利用。

9.退火:热变性的DNA分子溶液,在缓慢冷却的情况下,DNA单链又重新配对复性的情况称为退火。 10.引发体:DNA的生物合成起始时由DNA模板链、多种蛋白因子和酶(包括引发酶,解旋酶等)所形成的复合体,功能是合成引物和起始DNA的生物合成。

11.分子杂交:不同来源的DNA分子放在一起加热变性,然后慢慢冷却,让其复性。若这些异源DNA之间有互补的序列或部分互补的序列,则复性时会形成杂交分子。这种在退火条件下,不同来源的DNA互补区形成DNA-DNA杂合双链、或DNA单链和RNA的互补区形成DNA-RNA杂合双链的过程称分子杂交。 12.基因:是指DNA分子上具有遗传效应的特定核苷酸序列的总称,是DNA分子中最小的功能单位,基因包含于DNA大分子中,存在于染色体上,基因在遗传中具有独立性和完整性。

14.呼吸链:又称电子传递链,是一系列电子传递体按对电子亲和力逐渐升高的顺序组成的电子传递系统,所有组成成分都嵌于线粒体内膜。生物氧化产生的氢和电子通过电子传递链传递给氧,产生的自由能可以通过与磷酸化作用偶联产生ATP。 15. 探针:人工制成的放射性同位素标记的已知核苷酸顺序的DNA小片段,用于检测未知DNA分子中是否有同源性区段。

16.酶的活性中心: 酶分子上的与酶活性(催化作用、结合作用)有关的必需基团由于肽链的折叠、盘绕在空间位置上相互靠近,形成具有一定空间结构的区域,参与酶促反应,这一区域称为酶的活性中心。

4,叙述DNA双螺旋结构模式的要点。

DNA双螺旋结构模型的要点是:1,DNA是一平行反向的双链结构,脱氧核糖基和磷酸骨架位于双链的外侧,碱基位于内侧,两条链的碱基之间以氢键相交接触。腺嘌呤始终与胸腺嘧啶配对存在,形成两个氢键(A=T),鸟嘌呤始终与胞嘧啶配对存在,形成三个氢键(G≡C),碱基平面与线性分子的长轴相垂直。一条链的走向是5’→3’,另一条链的走向就一定是3’→5’;2,DNA是一右手螺旋结构;3,DNA双螺旋结构稳定的维系横向靠两条链间互补碱基的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。

1,以酶原的激活为例说明结构与功能的关系。 在一定条件下,酶原受某种因素作用后,分子结构发生变化,暴露或形成活性中心,转变成具有活性的酶,这一过程

叫做酶原的激活。酶原激活过程说明了蛋白质结构与功能密切相关,结构改变,功能也随之改变,结构破坏,功能丧失。

1,糖酵解的主要生理意义是什么

①是机体在缺氧条件下供应能量的重要方式;②是某些组织细胞的主要供能方式;③糖酵解的产物为某些物质合成提供原料;④红细胞中经糖酵解途径生成的2,3-BPG可调节血红蛋白的带氧功能

2糖有氧氧化的主要生理意义是什么

①是机体获得能量的主要方式;②三羧酸循环是三大营养物质彻底氧化分解的共同途径;③三羧酸循环是三大物质代谢互相联系、互相转化的枢纽 20,简述乳酸循环的生理意义 肌肉组织中不存在葡萄糖-6-磷酸酶,因此不能将肌糖原分解为葡萄糖。肌肉组织中糖异生酶类活性也较低,没有足够的能力进行糖异生作用。当氧供应不足时,肌肉组织糖酵解加强,必然导致乳酸生成增多,通过乳酸循环将有助于乳酸的再利用,并防止因乳酸堆积导致中毒。

1,何谓酮体?酮体是怎样生成的,又是如何氧化利用的? 酮体的生成包括乙酰乙酸、β-羟丁酸和丙酮。 酮体的生成部位在肝细胞线粒体,合成原料为脂肪酸β-氧化生成的乙酰CoA,2分子乙酰CoA缩合生成乙酰乙酸CoA,乙酰乙酸CoA再与1分子乙酰CoA缩合生成NMGCoA,催化此反应的 NMGCoA 合成酶是酮体合成的限速酶,NMGCoA 裂解生成 乙酰乙酸 和 乙酰CoA ,乙酰乙酸 还原生成 β-羟丁酸 或脱羧生成 丙酮。肝能生成酮体,但不能利用酮体。 肝外组织的乙酰乙酸 经过乙酰乙酸硫激酶或 琥珀酰CoA 转硫酶及硫解酶的催化下,转变成乙酰CoA并进入三磷酸循环而被氧化利用,丙酮可经肾、肺 排出。 3,试述呼吸链的组成成分及功能?并写出体内两条主要呼吸链的传递链

呼吸链的组成成分:①NAD+为辅酶的脱氢类,其作用为递氢体作用;②黄素蛋白,其辅酶为FMN或FAD,其作用为递氢体;③铁硫蛋白,其作用为递电子体;④CoQ其作用是递氢体;⑤细胞色素体系包括b-c1-c –aa3,其功能为递电子体。NADH氧化呼吸链顺序为:SH2 →NAD+ →(FMN-Fe-S) → COQ →Cyt(b-c1-c aa3) → O2. FADH2氧化呼吸链顺序为SH2 →(FAD-Fe-S) → CoQ → Cyt(b-c1-c-aa3) →O2

1,简述血氨的来源和去路。 答:来源:氨基酸脱氨基、肠道吸收、肾产生。 去路:合成尿素、重新合成氨基酸合成其它含氮化合物。 8,何谓鸟氨酸循环?有何生理意义?

鸟氨酸循环是指鸟氨酸与氨基甲酰磷酸反应生成瓜氨酸,瓜氨酸再与另一分子氨生成精氨酸,精氨酸在肝精氨酸酶的催化下水解生成尿素和鸟氨酸。鸟氨酸可再重复上述过程,如此循环一次,2分子氨和1分子CO2变成1分子尿素。

在鸟氨酸循环的过程中,精氨酸代琥珀酸合成酶为限速酶,此步反应是一个耗能反应。鸟氨酸循环在线粒体和胞浆中进行。 生理意义:肝脏通过鸟氨酸循环将有毒的氨转变成无毒的尿素,经肾排除体外。这是肝的一个重要生理功能,其意义在于解除氨毒。

3.DNA半保留复制的意义是什么? 答:生物的遗传特性就蕴藏在DNA分子的一级结构,即碱基排列顺序中,而子细胞的DNA分子是经半保留复制方式得到的,其一级结构与母细胞DNA分子完全相同。因此,通过半保留复制,生物就能保证其遗传特性代代相传,保持相对稳定,这是遗传保守性的分子基础。

2,简述原核生物中RNA转录合成的基本过程

原核生物中RNA转录合成的基本过程:

转录的起始:首先由RNA聚合酶的σ亚基辨认启动子,并促使RNA聚合酶全酶与启动子结合,然后RNA聚合酶使DNA 局部解链。接着,RNA 聚合酶催化第一个磷酸二脂键形成。

转录的延伸:RNA 链的延伸过程中由核心酶催化。 转录的终止:有两种方式。自动终止和依赖ρ因子的终止。 1,论述遗传密码的特点。 模板从mRNA5’端的起始密码开始。到3’端称为开放读码框架。在框架内每3个碱基组成一个密码子,体现一个氨基酸的信息。遗传密码共64个,其中,61个密码分别代表各种氨基酸。3个为肽链合成的终止信号。

遗传密码特点:1,连续性;2,密码的简并性;3,摆动性;4,通用性

3,简述蛋白质生物合成的基本过程。

蛋白质生物合成的基本过程:

氨基酸的活化与转运:由氨基酰tRNA合成酶催化,ATP供能,使氨基酸的羧基活化并与相应的tRNA连接。 核糖体循环:为蛋白质合成的中心环节,通常将其分为肽链合成的开始、延长和终止三个阶段。

翻译后的加工:指从核糖体上释放出来的多肽链,经过一定的加工和修饰转变成具有一定构象和功能的蛋白质的过程。

生物化学解答题

1计算一分子软脂酸(C15H31COOH)彻底氧化成CO2和H2O, 产生多少ATP?(12分)

氧化过程:脂肪酸β-氧化,经脱氢、水化、再脱氢、硫解四步反应,产生乙酰CoA和比原来脂酰辅酶A少两个碳原子的脂酰CoA。

新生成的脂酰辅酶A再经上述四个反应,最终全部转化为乙酰CoA。

乙酰CoA再进入三羧酸循环(TCA循环),最后形成二氧化碳和水。 步骤:

相关推荐